精英家教网 > 高中数学 > 题目详情

已知函数).
(1)当时,求函数的单调区间;
(2)函数在定义域内是否存在零点?若存在,请指出有几个零点;若不存在,请说明理由;
(3)若对任意恒成立,求a的取值范围.

(1)的单调增区间为,单调减区间为.(2)当时,函数有两个不同的零点;当时,函数有且仅有一个零点;当时,函数没有零点;(3)
a的取值范围是

解析试题分析:(1)首先求导:,再根据导数的符号确定其单调性.时,函数单调递增;时,函数单调减;(2)首先分离参数.由,得.令),下面就利用导数研究函数性质,然后结合图象便可得知的零点的个数;(3)要使得对任意恒成立,只需的最小值大于零即可. 由,则.当时,对,有,所以函数在区间上单调递增,又,即恒成立.当时,由(1),单调递增区间为,单调递减区间为,若对任意恒成立,只需,显然不可能直接解这个不等式,下面利用导数来研究,看在什么条件下这个不等式能成立.令),,即在区间上单调递减,又,故上恒成立,也就是说当时,满足的a不存在.所以a的取值范围是
(1)由,则
,得;由,得
所以函数的单调增区间为,单调减区间为. 4分
(2)函数的定义域为,由,得), 5分
),则
由于,可知当

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(2014·成都模拟)已知函数f(x)=x2++alnx(x>0).
(1)若f(x)在[1,+∞)上单调递增,求a的取值范围.
(2)若定义在区间D上的函数y=f(x)对于区间D上的任意两个值x1,x2总有不等式[f(x1)+f(x2)]≥f成立,则称函数y=f(x)为区间D上的“凹函数”.试证当a≤0时,f(x)为“凹函数”.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2+ax+b,g(x)=ex(cx+d).若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.
(1)求a,b,c,d的值;
(2)若x≥-2时,f(x)≤kg(x),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处的切线的斜率为.
(1)求实数的值及函数的最大值;
(2)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,曲线经过点
且在点处的切线为.
(1)求的值;
(2)若存在实数,使得时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,试用含的式子表示,并讨论的单调区间;
(2)若有零点,,且对函数定义域内一切满足的实数
①求的表达式;
②当时,求函数的图像与函数的图像的交点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 
(1)求函数处的切线的斜率;
(2)求函数的最大值;
(3)设,求函数上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图象在点处的切线方程为
.
(1)求实数的值;
(2)设.
①若上的增函数,求实数的最大值;
②是否存在点,使得过点的直线若能与曲线围成两个封闭图形,则这两个封闭图形的面积总相等.若存在,求出点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若存在,使得,求a的取值范围;
(2)若有两个不同的实数解,证明:.

查看答案和解析>>

同步练习册答案