| A. | $\frac{π}{4}$ | B. | $\frac{π}{2}$ | C. | $\frac{3π}{4}$ | D. | π |
分析 f(x)的图象向右平移m个单位后,的到的函数为y=$\sqrt{2}$sin($\frac{π}{4}$+m-x),函数y=sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$),由题意可得 $\sqrt{2}$sin($\frac{π}{4}$+m-x)=$\sqrt{2}$sin(x+$\frac{π}{4}$),故有$\frac{π}{4}$+m-x=x+$\frac{π}{4}$+2kπ,或$\frac{π}{4}$+m-x=2kπ+π-(x+$\frac{π}{4}$),k∈z.结合所给的选项,得出结论.
解答 解:函数f(x)=cosx-sinx=$\sqrt{2}$($\frac{\sqrt{2}}{2}$cosx-$\frac{\sqrt{2}}{2}$sinx)=$\sqrt{2}$sin($\frac{π}{4}$-x)=-$\sqrt{2}$sin(x-$\frac{π}{4}$),
函数y=-f′(x)=sinx+cosx=$\sqrt{2}$(sinx $\frac{\sqrt{2}}{2}$+$\frac{\sqrt{2}}{2}$cosx)=$\sqrt{2}$sin(x+$\frac{π}{4}$),
把f(x)的图象向右平移m个单位后,得到的函数为y=-$\sqrt{2}$sin[(x-m)-$\frac{π}{4}$]=$\sqrt{2}$sin($\frac{π}{4}$+m-x),
由题意可得 $\sqrt{2}$sin($\frac{π}{4}$+m-x)=$\sqrt{2}$sin(x+$\frac{π}{4}$),
故有 $\frac{π}{4}$+m-x=x+$\frac{π}{4}$+2kπ,或 $\frac{π}{4}$+m-x=2kπ+π-(x+$\frac{π}{4}$),k∈z.
结合所给的选项,只有B才满足条件,
故选:B.
点评 本题主要考查函数y=Asin(ωx+∅)的图象变换,求得$\frac{π}{4}$+m-x=x+$\frac{π}{4}$+2kπ,或$\frac{π}{4}$+m-x=2kπ+π-(x+$\frac{π}{4}$),k∈z,是解题的关键,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1+$\sqrt{2}$ | B. | 1+$\frac{{\sqrt{2}}}{2}$ | C. | 2+$\sqrt{2}$ | D. | 2+$\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{10}$ | B. | $\frac{3π}{10}$ | C. | $\frac{π}{20}$ | D. | $\frac{3π}{20}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 在直角坐标系中,通过伸缩变换圆可以变成椭圆 | |
| B. | 在直角坐标系中,平移变换不会改变图形的形状和大小 | |
| C. | 任何一个参数方程都可以转化为直角坐标方程和极坐标方程 | |
| D. | 同一条曲线可以有不同的参数方程 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com