精英家教网 > 高中数学 > 题目详情
8.己知函数f(x)=$\frac{{a{x^2}}}{e^x}({a≠0})$,h(x)=x-$\frac{1}{x}$.
(I)求函数f(x)的单调区间;
(II)设a=1,且g(x)=$\frac{1}{2}[{f(x)+h(x)}]-\frac{1}{2}\left|{f(x)}\right.-h(x)\left|{-c{x^2}}$,已知函数g(x)在(0,+∞)上是增函数.
(1)研究函数φ(x)=f(x)-h(x)在(0,+∞)上零点的个数;
(ii)求实数c的取值范围.

分析 (Ⅰ)根据题意,由函数的解析式对其求导,对a进行分2类讨论,①当a>0时,②当a<0时,分别分析导函数的符号,综合即可得答案;
(Ⅱ)(1)根据题意,将a=1代入φ(x)的解析式,求导对x进行分类讨论,分析可得ϕ(x)在(0,+∞)上单调递减,结合零点判定定理即可得答案;
(ii)由(1)的结论,当x∈(0,x0)时,ϕ(x)>0,当x∈(x0,+∞)时,ϕ(x)<0.分析x>0时函数的解析式,并求导,分析可得答案.

解答 解:(Ⅰ)根据题意,∵$f(x)=\frac{{a{x^2}}}{e^x}(a≠0)$,
∴$f'(x)=a(2x{e^{-x}}-{x^2}{e^{-x}})=ax(2-x){e^{-x}}=\frac{ax(2-x)}{e^x}$,
①当a>0时,
在x∈(-∞,0)∪(2,+∞)时,f'(x)<0,
在x∈(0,2)时,f'(x)>0,
故f(x)在(-∞,0),(2,+∞)上是减函数,在(0,2)上是增函数;
②当a<0时,
在x∈(-∞,0)∪(2,+∞)时,f'(x)>0,
在x∈(0,2)时,f'(x)<0,
故f(x)在(-∞,0),(2,+∞)上是增函数,在(0,2)上是减函数;
(Ⅱ)(1)当a=1时,函数ϕ(x)=f(x)-h(x)=$\frac{x^2}{e^x}-(x-\frac{1}{x})$,
求导,得$ϕ'(x)=\frac{x(2-x)}{e^x}-1-\frac{1}{x^2}$,
当x≥2时,ϕ'(x)<0恒成立,
当0<x<2时,$x(2-x)≤{[\frac{x+(2-x)}{2}]^2}=1$,
∴$ϕ'(x)=\frac{x(2-x)}{e^x}-1-\frac{1}{x^2}$$≤\frac{1}{e^x}-1-\frac{1}{x^2}<1-1-\frac{1}{x^2}<0$,
∴ϕ'(x)<0在(0,+∞)上恒成立,故ϕ(x)在(0,+∞)上单调递减.
又$ϕ(1)=\frac{1}{e}>0$,$ϕ(2)=\frac{4}{e^2}-\frac{3}{2}<0$,
曲线ϕ(x)=f(x)-h(x)在[1,2]上连续不间断,
∴由函数的零点存在性定理及其单调性知,?唯一的x0∈(1,2),使ϕ(x0)=0,
所以,函数ϕ(x)=f(x)-h(x)在(0,+∞)上零点的个数为1.
(ii)由(1)知,当x∈(0,x0)时,ϕ(x)>0,当x∈(x0,+∞)时,ϕ(x)<0.
∴当x>0时,$g(x)=\frac{1}{2}[f(x)+h(x)]-\frac{1}{2}|f(x)-h(x)|-c{x^2}$=$\left\{\begin{array}{l}x-\frac{1}{x}-c{x^2},0<x≤{x_0}\\ \frac{x^2}{e^x}-c{x^2},x>{x_0}\end{array}\right.$
求导,得$g'(x)=\left\{\begin{array}{l}1+\frac{1}{x^2}-2cx,\;0<x≤{x_0}\\ \frac{x(2-x)}{e^x}-2cx,\;x>{x_0}.\end{array}\right.$
由函数g(x)在(0,+∞)上是增函数,且曲线y=g(x)在(0,+∞)上连续不断知:g'(x)≥0在(0,x0],(x0,+∞)上恒成立.
①当x∈(x0,+∞)时,$\frac{x(2-x)}{{e}^{x}}$-2cx≥0在(x0,+∞)上恒成立,
即$2c≤\frac{2-x}{e^x}$在(x0,+∞)上恒成立,
记$u(x)=\frac{2-x}{e^x}$,x>x0,则$u'(x)=\frac{x-3}{e^x}$,x>x0
当 x变化时,u'(x),u(x)变化情况列表如下:

x(x0,3)3(3,+∞)
u'(x)-0+
u(x)极小值
∴u(x)min=u(x)极小值=u(3)=$-\frac{1}{e^3}$,
故“$2c≤\frac{2-x}{e^x}$在(x0,+∞)上恒成立”,只需2c≤u(x)min=$-\frac{1}{e^3}$,即$c≤-\frac{1}{{2{e^3}}}$.
②当x∈(0,x0]时,g'(x)=1+$\frac{1}{{x}^{2}}$-2cx,
当c≤0时,g'(x)>0在x∈(0,x0]上恒成立,
综合①②知,当$c≤-\frac{1}{{2{e^3}}}$时,函数g(x)在(0,+∞)上是增函数.
故实数c的取值范围是$(-∞,\;-\frac{1}{{2{e^3}}}]$.

点评 本题考查函数导数的应用,涉及导数与函数的单调性的关系,关键是正确求出函数的导数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.甲组数据为x1,x2,…,xn,乙组数据为y1,y2,…yn,其中yi=$\sqrt{2}$xi+2(i=1,2,…,n),若甲组数据平均值为10,方差为2,则乙组数据的平均值和方差分别为(  )
A.10$\sqrt{2}$+2,4B.10$\sqrt{2}$,2$\sqrt{2}$C.10$\sqrt{2}$+2,6D.10$\sqrt{2}$,4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.cos(-420°)的值等于$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=lnx+x2+ax,
(1)若f(x)在定义域内为增函数,求实数a的取值范围;
(2)设g(x)=f(x)-x2+1,当a=-1时,求证:g(x)≤0恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.《汉字听写大会》不断创收视新高,为了避免“书写危机”弘扬传统文化,某市对全市10万名市民进行了汉字听写测试,调查数据显示市民的成绩服从正态分布N(168,16).现从某社区居民中随机抽取50名市民进行听写测试,发现被测试市民正确书写汉字的个数全部在160到184之间,将测试结果按如下方式分成六组:第一组[160,164),第二组[164,168),…,第六组[180,184),如图是按上述分组方法得到的频率分布直方图.
(1)若电视台记者要从抽取的市民中选1人进行采访,求被采访人恰好在第1组或第4组的概率;
(2)已知第1组市民中男性有3名,组织方要从第1组中随机抽取2名市民组成弘扬传统文化宣传队,求至少有1名女性群众的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若将函数f(x)=cosx-sinx的图象向右平移m个单位后恰好与函数y=-f′(x),的图象重合,则m的值可以为(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.$\frac{3π}{4}$D.π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)求函数$f(x)={log_{2x-1}}\sqrt{3x-2}$的定义域;
(2)求函数$y={(\frac{1}{3})^{{x^2}-4x}}\;\;,\;x∈[0,5)$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.根据下边流程图输出的值是(  )
A.11B.31C.51D.79

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知p:对?m∈[-1,1],不等式${a^2}-5a-3≥\sqrt{{m^2}+8}$恒成立;q:?x∈R使不等式x2+ax+2<0成立,若p是真命题,q是假命题,求a的取值范围.

查看答案和解析>>

同步练习册答案