分析 (1)求出函数的导数,问题转化为-a≤$\frac{1}{x}$+2x恒成立,根据不等式的性质求出a的范围即可;
(2)求出g(x)的解析式,求出函数的导数,根据函数的单调性求出g(x)的最大值,证明结论即可.
解答 解:(1)函数f(x)的定义域为(0,+∞),要使f(x)=lnx+x2+ax在定义域内是增函数,
则等价为f′(x)≥0恒成立,
∵f(x)=lnx+x2+ax,
∴f′(x)=$\frac{1}{x}$+2x+a≥0,
即-a≤$\frac{1}{x}$+2x恒成立,
当x>0时,y=$\frac{1}{x}$+2x≥2$\sqrt{\frac{1}{x}•x}$=2$\sqrt{2}$,
则-a≤2$\sqrt{2}$,即a≥-2$\sqrt{2}$.
(2)a=-1时,g(x)=f(x)-x2+1=lnx-x,
g(x)的定义域是(0,+∞),
g′(x)=$\frac{1}{x}$-1=$\frac{1-x}{x}$,
令g′(x)>0,解得:0<x<1,
令g′(x)<0,解得:x>1,
故g(x)在(0,1)递增,在(1,+∞)递减,
故g(x)≤g(1)=0,
故结论成立.
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ${[{ln(2x+1)}]^′}=\frac{1}{2x+1}$ | B. | ${({{{log}_2}x})^′}=\frac{1}{xln2}$ | C. | (3x)′=3xlog3e | D. | (x2cosx)′=-2xsinx |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1+$\sqrt{2}$ | B. | 1+$\frac{{\sqrt{2}}}{2}$ | C. | 2+$\sqrt{2}$ | D. | 2+$\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{10}$ | B. | $\frac{3π}{10}$ | C. | $\frac{π}{20}$ | D. | $\frac{3π}{20}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com