精英家教网 > 高中数学 > 题目详情
3.《汉字听写大会》不断创收视新高,为了避免“书写危机”弘扬传统文化,某市对全市10万名市民进行了汉字听写测试,调查数据显示市民的成绩服从正态分布N(168,16).现从某社区居民中随机抽取50名市民进行听写测试,发现被测试市民正确书写汉字的个数全部在160到184之间,将测试结果按如下方式分成六组:第一组[160,164),第二组[164,168),…,第六组[180,184),如图是按上述分组方法得到的频率分布直方图.
(1)若电视台记者要从抽取的市民中选1人进行采访,求被采访人恰好在第1组或第4组的概率;
(2)已知第1组市民中男性有3名,组织方要从第1组中随机抽取2名市民组成弘扬传统文化宣传队,求至少有1名女性群众的概率.

分析 (1)利用频率分布直方图的性质能求出被采访人恰好在第1组或第4组的频率,由此能估计被采访人恰好在第1组或第4组的概率.
(2)第1组[20,30)的人数为6,从而第1组中共有6名市民,其中女性市民共3名,记第1组中的3名男性市民分别为A,B,C,3名女性市民分别为x,y,z,利用列举法能求出从第1组中随机抽取2名市民组成宣传务队,至少有1名女性的概率.

解答 解:(1)设第1组[20,30)的频率为f1
则由题意可知:
f1=1-(0.010+0.035+0.030+0.020)×10=0.05,
被采访人恰好在第1组或第4组的频率为(0.05+0.020)×10=0.25,
∴估计被采访人恰好在第1组或第4组的概率为0.25.
(2)第1组[20,30)的人数为0.05×120=6,
∴第1组中共有6名市民,其中女性市民共3名,
记第1组中的3名男性市民分别为A,B,C,3名女性市民分别为x,y,z,
从第1组中随机抽取2名市民组成宣传队,共有15个基本事件,列举如下:
AB,AC,Ax,Ay,Az,BC,Bx,By,Bz,Cx,Cy,Cz,xy,xz,yz,
至少有1名女性Ax,Ay,Az,Bx,By,Bz,Cx,Cy,Cz,xy,xz,yz共12个基本事件,
∴从第1组中随机抽取2名市民组成宣传务队,至少有1名女性的概率为p=$\frac{12}{15}$=$\frac{4}{5}$.

点评 本题考查频率分布直方图的应用,考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=$\left\{\begin{array}{l}{lo{g}_{4}x,x≥1}\\{{2}^{-x},x<1}\end{array}\right.$,求不等式f(x)≤1的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.一个不透明的袋子中装有4个形状相同的小球,分别标有不同的数字2,3,4,x,现从袋中随机摸出2个球,并计算摸出的这2个球上的数字之和,记录后将小球放回袋中搅匀,进行重复试验.记A事件为“数字之和为7”.试验数据如下表:
摸球总次数1020306090120180240330450
“和为7”出现的频数19142426375882109150
“和为7”出现的频率0.100.450.470.400.290.310.320.340.330.33
(参考数据:0.33$≈\frac{1}{3}$)
(Ⅰ)如果试验继续下去,根据上表数据,出现“数字之和为7”的频率将稳定在它的概率附近.试估计“出现数字之和为7”的概率,并求x的值;
(Ⅱ)在(Ⅰ)的条件下,设定一种游戏规则:每次摸2球,若数字和为7,则可获得奖金7元,否则需交5元.某人摸球3次,设其获利金额为随机变量η元,求η的数学期望和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)求经过点(-2,-3),在x轴、y轴上截距相等的直线方程
(2)求两条垂直的直线l1:2x+y+2=0与l2:ax+4y-2=0的交点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.曲线 f(x)=x3+x-2在P0处的切线平行于直线y=4x+1,则P0的坐标为(  )
A.(1,0)B.(2,8)C.(1,0)或 (-1,-4)D.(2,8)或 (-1,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.己知函数f(x)=$\frac{{a{x^2}}}{e^x}({a≠0})$,h(x)=x-$\frac{1}{x}$.
(I)求函数f(x)的单调区间;
(II)设a=1,且g(x)=$\frac{1}{2}[{f(x)+h(x)}]-\frac{1}{2}\left|{f(x)}\right.-h(x)\left|{-c{x^2}}$,已知函数g(x)在(0,+∞)上是增函数.
(1)研究函数φ(x)=f(x)-h(x)在(0,+∞)上零点的个数;
(ii)求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.为了开一家汽车租赁公司,小王调查了市面上A,B两种车型的出租情况,他随机抽取了某租赁公司的这两种车型各100辆,分别统计了每辆车在某一周内的出租天数,得到下表的统计数据:
A型车
出租天数1234567
车辆数51030351532
B型车
出租天数1234567
车辆数1420201615105
以这200辆车的出租频率代替每辆车的出租概率,完成下列问题:
(Ⅰ)根据上述统计数据,估计该公司一辆A型车,一辆B型车一周内合计出租天数恰好为4天的概率;
(Ⅱ)如果两种车型每辆车每天出租获得的利润相同,在不考虑其他因素的情况下,运用所学的统计学知识,你会建议小王选择购买哪种车型的车,请说明选择的依据.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在区间[0,1]上随机选取两个数x和y,则满足2x-y<0的概率为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若函数f(x)=x3+x2+mx+1是R上的单调函数,则实数m的取值范围是[$\frac{1}{3}$,+∞).

查看答案和解析>>

同步练习册答案