分析 (1)利用频率分布直方图的性质能求出被采访人恰好在第1组或第4组的频率,由此能估计被采访人恰好在第1组或第4组的概率.
(2)第1组[20,30)的人数为6,从而第1组中共有6名市民,其中女性市民共3名,记第1组中的3名男性市民分别为A,B,C,3名女性市民分别为x,y,z,利用列举法能求出从第1组中随机抽取2名市民组成宣传务队,至少有1名女性的概率.
解答 解:(1)设第1组[20,30)的频率为f1,
则由题意可知:
f1=1-(0.010+0.035+0.030+0.020)×10=0.05,
被采访人恰好在第1组或第4组的频率为(0.05+0.020)×10=0.25,
∴估计被采访人恰好在第1组或第4组的概率为0.25.
(2)第1组[20,30)的人数为0.05×120=6,
∴第1组中共有6名市民,其中女性市民共3名,
记第1组中的3名男性市民分别为A,B,C,3名女性市民分别为x,y,z,
从第1组中随机抽取2名市民组成宣传队,共有15个基本事件,列举如下:
AB,AC,Ax,Ay,Az,BC,Bx,By,Bz,Cx,Cy,Cz,xy,xz,yz,
至少有1名女性Ax,Ay,Az,Bx,By,Bz,Cx,Cy,Cz,xy,xz,yz共12个基本事件,
∴从第1组中随机抽取2名市民组成宣传务队,至少有1名女性的概率为p=$\frac{12}{15}$=$\frac{4}{5}$.
点评 本题考查频率分布直方图的应用,考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 摸球总次数 | 10 | 20 | 30 | 60 | 90 | 120 | 180 | 240 | 330 | 450 |
| “和为7”出现的频数 | 1 | 9 | 14 | 24 | 26 | 37 | 58 | 82 | 109 | 150 |
| “和为7”出现的频率 | 0.10 | 0.45 | 0.47 | 0.40 | 0.29 | 0.31 | 0.32 | 0.34 | 0.33 | 0.33 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,0) | B. | (2,8) | C. | (1,0)或 (-1,-4) | D. | (2,8)或 (-1,-4) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 出租天数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 车辆数 | 5 | 10 | 30 | 35 | 15 | 3 | 2 |
| 出租天数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 车辆数 | 14 | 20 | 20 | 16 | 15 | 10 | 5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com