15£®ÎªÁË¿ªÒ»¼ÒÆû³µ×âÁÞ¹«Ë¾£¬Ð¡Íõµ÷²éÁËÊÐÃæÉÏA£¬BÁ½ÖÖ³µÐ͵ijö×âÇé¿ö£¬ËûËæ»ú³éÈ¡ÁËij×âÁÞ¹«Ë¾µÄÕâÁ½ÖÖ³µÐ͸÷100Á¾£¬·Ö±ðͳ¼ÆÁËÿÁ¾³µÔÚijһÖÜÄڵijö×âÌìÊý£¬µÃµ½Ï±íµÄͳ¼ÆÊý¾Ý£º
AÐͳµ
³ö×âÌìÊý1234567
³µÁ¾Êý51030351532
BÐͳµ
³ö×âÌìÊý1234567
³µÁ¾Êý1420201615105
ÒÔÕâ200Á¾³µµÄ³ö×âÆµÂÊ´úÌæÃ¿Á¾³µµÄ³ö×â¸ÅÂÊ£¬Íê³ÉÏÂÁÐÎÊÌ⣺
£¨¢ñ£©¸ù¾ÝÉÏÊöͳ¼ÆÊý¾Ý£¬¹À¼Æ¸Ã¹«Ë¾Ò»Á¾AÐͳµ£¬Ò»Á¾BÐͳµÒ»ÖÜÄںϼƳö×âÌìÊýÇ¡ºÃΪ4ÌìµÄ¸ÅÂÊ£»
£¨¢ò£©Èç¹ûÁ½ÖÖ³µÐÍÿÁ¾³µÃ¿Ìì³ö×â»ñµÃµÄÀûÈóÏàͬ£¬ÔÚ²»¿¼ÂÇÆäËûÒòËØµÄÇé¿öÏ£¬ÔËÓÃËùѧµÄͳ¼ÆÑ§ÖªÊ¶£¬Äã»á½¨ÒéСÍõÑ¡Ôñ¹ºÂòÄÄÖÖ³µÐ͵ijµ£¬Çë˵Ã÷Ñ¡ÔñµÄÒÀ¾Ý£®

·ÖÎö £¨¢ñ£©ÉèʼþAi±íʾ¡°Ò»Á¾AÐͳµÔÚÒ»ÖÜÄÚ³ö×âÌìÊýÇ¡µ½ºÃ´¦ºÃΪiÌ족£¬
ʼþBj±íʾ¡°Ò»Á¾BÐͳµÔÚÒ»ÖÜÄÚ³ö×âÌìÊýÇ¡ºÃΪjÌ족£¬ÆäÖÐi£¬j=1£¬2£¬3£¬¡­£¬7£¬
¼ÆËã¸Ã¹«Ë¾Ò»Á¾AÐͳµ¡¢Ò»Á¾BÐͳµÒ»ÖÜÄںϼƳö×âÌìÊýÇ¡ºÃΪ4ÌìµÄ¸ÅÂÊΪP£¨A1B3+A2B2+A3B1£©£»
£¨¢ò£©ÉèXΪAÐͳµ³ö×âÌìÊý£¬Çó³öXµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£¬
ÉèYΪBÐͳµ³ö×âÌìÊý£¬Çó³öYµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£¬
ÔÙÓɳö×âÌìÊýµÄÊý¾Ý·ÖÎö£¬Óɴ˵óö½áÂÛ£®

½â´ð ½â£º£¨¢ñ£©ÉèʼþAi±íʾ¡°Ò»Á¾AÐͳµÔÚÒ»ÖÜÄÚ³ö×âÌìÊýÇ¡µ½ºÃ´¦ºÃΪiÌ족£¬
ʼþBj±íʾ¡°Ò»Á¾BÐͳµÔÚÒ»ÖÜÄÚ³ö×âÌìÊýÇ¡ºÃΪjÌ족£¬ÆäÖÐi£¬j=1£¬2£¬3£¬¡­£¬7£¬
Ôò¸Ã¹«Ë¾Ò»Á¾AÐͳµ¡¢Ò»Á¾BÐͳµÒ»ÖÜÄںϼƳö×âÌìÊýÇ¡ºÃΪ4ÌìµÄ¸ÅÂÊΪ£º
P£¨A1B3+A2B2+A3B1£©
=P£¨A1£©P£¨B3£©+P£¨A2£©P£¨B2£©+P£¨A3£©P£¨B1£©
=$\frac{5}{100}$¡Á$\frac{2}{100}$+$\frac{10}{100}$¡Á$\frac{20}{100}$+$\frac{30}{100}$¡Á$\frac{14}{100}$=$\frac{9}{125}$£»
£¨¢ò£©ÉèXΪAÐͳµ³ö×âÌìÊý£¬ÔòXµÄ·Ö²¼ÁÐΪ£º

 X 1 2 3 4 5 6 7
 P 0.05 0.10 0.30 0.35 0.15 0.03 0.02
ÉèYΪBÐͳµ³ö×âÌìÊý£¬ÔòYµÄ·Ö²¼ÁÐΪ£º
 Y 1 3 4 5 6 7
 P 0.14 0.20 0.20 0.16 0.15 0.10 0.05
¼ÆËãÊýѧÆÚÍûE£¨X£©=1¡Á0.05+2¡Á0.10+3¡Á0.30+4¡Á0.35+5¡Á0.15+6¡Á0.03+7¡Á0.02=3.62£¬
E£¨Y£©=1¡Á0.14+2¡Á0.20+3¡Á0.20+4¡Á0.16+5¡Á0.15+6¡Á0.10+7¡Á0.05=3.48£»
ËùÒÔÒ»Á¾AÀàÐ͵ijö×â³µÒ»¸öÐÇÆÚ³ö×âÌìÊýµÄƽ¾ùÊýΪ3.62Ì죬
BÀàÐͳö×â³µÒ»¸öÐÇÆÚ³ö×âÌìÊýµÄƽ¾ùֵΪ3.48Ì죬
´Ó³ö×âÌìÊýµÄÊý¾Ý¿´£¬AÐͳö×â³µ³ö×âÌìµÄ¾ùÖµ´óÓÚBÐͳö×â³µ³ö×âÌìÊýµÄ¾ùÖµ£¬
×ۺϷÖÎö£¬Ñ¡ÔñAÀà³ö×â³µ¸ü¼ÓºÏÀí£®

µãÆÀ ±¾Ì⿼²éÁ˸ÅÂʵÄÇó·¨ÒÔ¼°ÀëÉ¢ÐÍËæ»úµÄ·Ö²¼ÁС¢ÊýѧÆÚÍûµÄ¼ÆËãÎÊÌ⣬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®´Ó4ÃûÄÐÉúºÍ2ÃûÅ®ÉúÖÐÈÎÑ¡3È˲μÓÑݽ²±ÈÈü£¬ÇëÁоٳöËùÓпÉÄܵĽá¹û£¬²¢¼ÆËãÏÂÁÐʼþµÄ¸ÅÂÊ£®
£¨1£©Aʼþ¡°ËùÑ¡3È˶¼ÊÇÄÐÉú¡±£»
£¨2£©Bʼþ¡°ÇóËùÑ¡3ÈËÇ¡ÓÐ1ÃûÅ®Éú¡±£»
£¨3£©Cʼþ¡°ÇóËùÑ¡3ÈËÖÐÖÁÉÙÓÐ1ÃûÅ®Éú¡±£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®º¯Êýf£¨x£©=|x-1|+|x-3|+ex£¨x¡Ý0£©µÄ×îСֵÊÇ6-2ln2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®¡¶ºº×ÖÌýд´ó»á¡·²»¶Ï´´ÊÕÊÓиߣ¬ÎªÁ˱ÜÃâ¡°ÊéдΣ»ú¡±ºëÑﴫͳÎÄ»¯£¬Ä³ÊжÔÈ«ÊÐ10ÍòÃûÊÐÃñ½øÐÐÁ˺º×ÖÌýд²âÊÔ£¬µ÷²éÊý¾ÝÏÔʾÊÐÃñµÄ³É¼¨·þ´ÓÕý̬·Ö²¼N£¨168£¬16£©£®ÏÖ´ÓijÉçÇø¾ÓÃñÖÐËæ»ú³éÈ¡50ÃûÊÐÃñ½øÐÐÌýд²âÊÔ£¬·¢ÏÖ±»²âÊÔÊÐÃñÕýÈ·Êéдºº×ֵĸöÊýÈ«²¿ÔÚ160µ½184Ö®¼ä£¬½«²âÊÔ½á¹û°´ÈçÏ·½Ê½·Ö³ÉÁù×飺µÚÒ»×é[160£¬164£©£¬µÚ¶þ×é[164£¬168£©£¬¡­£¬µÚÁù×é[180£¬184£©£¬ÈçͼÊǰ´ÉÏÊö·Ö×é·½·¨µÃµ½µÄƵÂÊ·Ö²¼Ö±·½Í¼£®
£¨1£©ÈôµçÊǪ́¼ÇÕßÒª´Ó³éÈ¡µÄÊÐÃñÖÐÑ¡1È˽øÐвɷã¬Ç󱻲ɷÃÈËÇ¡ºÃÔÚµÚ1×é»òµÚ4×éµÄ¸ÅÂÊ£»
£¨2£©ÒÑÖªµÚ1×éÊÐÃñÖÐÄÐÐÔÓÐ3Ãû£¬×éÖ¯·½Òª´ÓµÚ1×éÖÐËæ»ú³éÈ¡2ÃûÊÐÃñ×é³ÉºëÑﴫͳÎÄ»¯Ðû´«¶Ó£¬ÇóÖÁÉÙÓÐ1ÃûÅ®ÐÔȺÖڵĸÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÍÖÔ²¦££º$\frac{x^2}{a^2}+\frac{{y{\;}^2}}{b^2}=1£¨{a£¾b£¾0}£©$µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬ÇÒ|F1F2|£¾2bµãP£¨0£¬2£©¹ØÓÚÖ±Ïßy=-xµÄ¶Ô³ÆµãÔÚÍÖÔ²¦£ÉÏ£¬ÍÖÔ²rµÄÉÏ¡¢Ï¶¥µã·Ö±ðΪA£¬B£¬¡÷AF1F2µÄÃæ»ýΪ$\sqrt{3}$£¬
£¨I£©ÇóÍÖÔ²¦£µÄ·½³Ì£»
£¨¢ò£©Èçͼ£¬¹ýµãPµÄÖ±ÏßlÍÖÔ²¦£ÏཻÓÚÁ½¸ö²»Í¬µÄµãC£¬D£¨CÔÚÏß¶ÎPDÖ®¼ä£©£®
£¨i£©Çó$\overrightarrow{OC}•\overrightarrow{OD}$µÄȡֵ·¶Î§£»
£¨ii£©µ±ADÓëBCÏཻÓÚµãQʱ£¬ÊÔÎÊ£ºµãQµÄ×Ý×ø±êÊÇ·ñÊǶ¨Öµ£¿ÈôÊÇ£¬Çó³ö¸Ã¶¨Öµ£»Èô²»ÊÇ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®£¨1£©Çóº¯Êý$f£¨x£©={log_{2x-1}}\sqrt{3x-2}$µÄ¶¨ÒåÓò£»
£¨2£©Çóº¯Êý$y={£¨\frac{1}{3}£©^{{x^2}-4x}}\;\;£¬\;x¡Ê[0£¬5£©$µÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªÇúÏßCÉÏÈÎÒ»µãM£¨x£¬y£©µ½µãE£¨-1£¬$\frac{1}{4}$£©ºÍÖ±Ïßa£ºy=-$\frac{1}{4}$µÄ ¾àÀëÏàµÈ£¬Ô²D£º£¨x-1£©2+£¨y-$\frac{1}{2}$£©2=r2£¨r£¾£©£©
£¨¢ñ£©ÇóÇúÏßCµÄ·½³Ì£»
£¨¢ò£©¹ýµãA£¨-2£¬1£©×÷ÇúÏßCµÄÇÐÏßb£¬²¢ÓëÔ²DÏàÇУ¬Çó°ë¾¶r£»
£¨¢ó£©ÈôÇúÏßCÓëÔ²DÇ¡ÓÐÒ»¸ö¹«¹²µãB£¨x0£¬£¨x0+1£©2£©£¬ÇÒÔÚBµã´¦Á½ÇúÏßµÄÇÐÏßΪͬһֱÏßd£¬Çó°ë¾¶r£®Õâʱ£¬ÄãÈÏΪÇúÏßCÓëÔ²D¹²Óм¸Ìõ¹«ÇÐÏߣ¨²»±ØÖ¤Ã÷£©£¿£¨×¢£º¹«ÇÐÏßÊÇÓëÁ½ÇúÏß¶¼ÏàÇеÄÖ±Ïߣ¬Çеã¿ÉÒÔ²»Í¬£®£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®£¨3-2x-x2£©£¨2x-1£©6µÄÕ¹¿ªÊ½ÖУ¬º¬x3ÏîµÄϵÊýΪ-588£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖª¼¯ºÏA={x|x2-16£¼0}£¬B={x|x2-4x-5¡Ý0}£®
£¨ I£©ÇóA¡ÉB£¬A¡ÈB£»
£¨ II£©ÇóA¡É£¨∁RB£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸