精英家教网 > 高中数学 > 题目详情
6.函数f(x)=|x-1|+|x-3|+ex(x≥0)的最小值是6-2ln2.

分析 通过讨论x的范围,去掉绝对值,求出得到区间上的x的最小值,从而求出函数的最小值即可.

解答 解:x∈[0,1)时,f(x)=1-x+3-x+ex=4-2x+ex
f′(x)=ex-2,令f′(x)>0,解得:x>ln2,
令f′(x)<0,解得:x<ln2,
故f(x)在[0,ln2)递减,在(ln2,1)递增,
故f(x)min=f(ln2)=4-2ln2+eln2=6-2ln2,
x∈[1,3)时,f(x)=x-1+3-x+ex=2+ex≥2+e,
x∈[3,+∞)时,f(x)=x-1+x-3+ex=2x-4+ex≥2+e3
综上,f(x)的最小值是6-2ln2.

点评 本题考查了函数的单调性、最值问题,考查分类讨论思想,转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.cos $\frac{103π}{4}$=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.不等式$\frac{x-1}{x+1}≤0$的解集为(  )
A.(-∞,-1)∪[1,+∞)B.[-1,1]C.[-1,1)D.(-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.一个不透明的袋子中装有4个形状相同的小球,分别标有不同的数字2,3,4,x,现从袋中随机摸出2个球,并计算摸出的这2个球上的数字之和,记录后将小球放回袋中搅匀,进行重复试验.记A事件为“数字之和为7”.试验数据如下表:
摸球总次数1020306090120180240330450
“和为7”出现的频数19142426375882109150
“和为7”出现的频率0.100.450.470.400.290.310.320.340.330.33
(参考数据:0.33$≈\frac{1}{3}$)
(Ⅰ)如果试验继续下去,根据上表数据,出现“数字之和为7”的频率将稳定在它的概率附近.试估计“出现数字之和为7”的概率,并求x的值;
(Ⅱ)在(Ⅰ)的条件下,设定一种游戏规则:每次摸2球,若数字和为7,则可获得奖金7元,否则需交5元.某人摸球3次,设其获利金额为随机变量η元,求η的数学期望和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知向量$\vec a$=(2sinx,1),$\vec b$=(2cosx,1),x∈R
(1)当x=$\frac{π}{4}$时,求向量$\vec a+\vec b$的坐标;
(2)设函数f(x)=$\vec a•\vec b$,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)求经过点(-2,-3),在x轴、y轴上截距相等的直线方程
(2)求两条垂直的直线l1:2x+y+2=0与l2:ax+4y-2=0的交点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.曲线 f(x)=x3+x-2在P0处的切线平行于直线y=4x+1,则P0的坐标为(  )
A.(1,0)B.(2,8)C.(1,0)或 (-1,-4)D.(2,8)或 (-1,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.为了开一家汽车租赁公司,小王调查了市面上A,B两种车型的出租情况,他随机抽取了某租赁公司的这两种车型各100辆,分别统计了每辆车在某一周内的出租天数,得到下表的统计数据:
A型车
出租天数1234567
车辆数51030351532
B型车
出租天数1234567
车辆数1420201615105
以这200辆车的出租频率代替每辆车的出租概率,完成下列问题:
(Ⅰ)根据上述统计数据,估计该公司一辆A型车,一辆B型车一周内合计出租天数恰好为4天的概率;
(Ⅱ)如果两种车型每辆车每天出租获得的利润相同,在不考虑其他因素的情况下,运用所学的统计学知识,你会建议小王选择购买哪种车型的车,请说明选择的依据.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知等差数列的第k、n、p项构成等比数列的连续3项,如果这个等差数列不是常数列,则等比数列的公比为$\frac{n-p}{k-n}$.

查看答案和解析>>

同步练习册答案