精英家教网 > 高中数学 > 题目详情
18.曲线 f(x)=x3+x-2在P0处的切线平行于直线y=4x+1,则P0的坐标为(  )
A.(1,0)B.(2,8)C.(1,0)或 (-1,-4)D.(2,8)或 (-1,-4)

分析 设P0(m,m3+m-2),求出f(x)的导数,可得切线的斜率,由两直线平行的条件:斜率相等,解方程即可得到所求切点的坐标.

解答 解:设P0(m,m3+m-2),
f(x)=x3+x-2的导数为f′(x)=3x2+1,
可得切线的斜率为k=3m2+1,
由切线平行于直线y=4x+1,
可得3m2+1=4,
解得m=±1,
即有P0的坐标为(1,0)和(-1,-4).
故选:C.

点评 本题考查导数的运用:求切线的斜率,同时考查两直线平行的条件:斜率相等,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.设(1+x)+(1+x)2+(1+x)3+…$+{(1+x)^{10}}={a_0}+{a_1}x+{a_2}{x^2}+$…$+{a_{10}}{x^{10}}$,则a2的值是165.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.执行如图所示的程序框图,若程序运行中输出的一个数组是(x,-10),则数组中的x=(  )
A.64B.32C.16D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=|x-1|+|x-3|+ex(x≥0)的最小值是6-2ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=-$\frac{1}{2}sin(2x-\frac{π}{6})$
(1)求f(x)的单调区间
(2)当x∈$[-\frac{π}{12},\frac{2π}{3}]$,求f(x)的最值及对应x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.《汉字听写大会》不断创收视新高,为了避免“书写危机”弘扬传统文化,某市对全市10万名市民进行了汉字听写测试,调查数据显示市民的成绩服从正态分布N(168,16).现从某社区居民中随机抽取50名市民进行听写测试,发现被测试市民正确书写汉字的个数全部在160到184之间,将测试结果按如下方式分成六组:第一组[160,164),第二组[164,168),…,第六组[180,184),如图是按上述分组方法得到的频率分布直方图.
(1)若电视台记者要从抽取的市民中选1人进行采访,求被采访人恰好在第1组或第4组的概率;
(2)已知第1组市民中男性有3名,组织方要从第1组中随机抽取2名市民组成弘扬传统文化宣传队,求至少有1名女性群众的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.椭圆Γ:$\frac{x^2}{a^2}+\frac{{y{\;}^2}}{b^2}=1({a>b>0})$的左、右焦点分别为F1,F2,且|F1F2|>2b点P(0,2)关于直线y=-x的对称点在椭圆Γ上,椭圆r的上、下顶点分别为A,B,△AF1F2的面积为$\sqrt{3}$,
(I)求椭圆Γ的方程;
(Ⅱ)如图,过点P的直线l椭圆Γ相交于两个不同的点C,D(C在线段PD之间).
(i)求$\overrightarrow{OC}•\overrightarrow{OD}$的取值范围;
(ii)当AD与BC相交于点Q时,试问:点Q的纵坐标是否是定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知曲线C上任一点M(x,y)到点E(-1,$\frac{1}{4}$)和直线a:y=-$\frac{1}{4}$的 距离相等,圆D:(x-1)2+(y-$\frac{1}{2}$)2=r2(r>))
(Ⅰ)求曲线C的方程;
(Ⅱ)过点A(-2,1)作曲线C的切线b,并与圆D相切,求半径r;
(Ⅲ)若曲线C与圆D恰有一个公共点B(x0,(x0+1)2),且在B点处两曲线的切线为同一直线d,求半径r.这时,你认为曲线C与圆D共有几条公切线(不必证明)?(注:公切线是与两曲线都相切的直线,切点可以不同.)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图是一个几何体的三视图,则该几何体的体积是(  )
A.$\sqrt{3}$B.2C.3D.4

查看答案和解析>>

同步练习册答案