精英家教网 > 高中数学 > 题目详情
4.如图是一个几何体的三视图,则该几何体的体积是(  )
A.$\sqrt{3}$B.2C.3D.4

分析 由三视图还原原几何体如图,该几何体为五面体,其中△ABC为等腰三角形,底边AB=2,底边上的高CF=$\sqrt{3}$,面ABDE为直角梯形,且ED=1,DB⊥AB.然后利用两个棱锥的体积和得答案.

解答 解:由三视图还原原几何体如图:

该几何体为五面体,其中△ABC为等腰三角形,底边AB=2,底边上的高CF=$\sqrt{3}$,
面ABDE为直角梯形,且ED=1,DB⊥AB.
连接EF,则该几何体的体积V=VC-AEF+VC-BDEF=$\frac{1}{3}×\frac{1}{2}×1×2×\sqrt{3}+\frac{1}{3}×1×2×\sqrt{3}=\sqrt{3}$.
故选:A.

点评 本题考查空间几何体的三视图,关键是由三视图还原原几何体,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.曲线 f(x)=x3+x-2在P0处的切线平行于直线y=4x+1,则P0的坐标为(  )
A.(1,0)B.(2,8)C.(1,0)或 (-1,-4)D.(2,8)或 (-1,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=sin(ωx+φ)(ω>0,φ∈[-$\frac{π}{2}$,0])的周期为π,将函数f(x)的图象沿着y轴向上平移一个单位得到函数g(x)图象,设g(x)<1,对任意的x∈(-$\frac{π}{3}$,-$\frac{π}{12}$)恒成立,当φ取得最小值时,g($\frac{π}{4}$)的值是(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知等差数列的第k、n、p项构成等比数列的连续3项,如果这个等差数列不是常数列,则等比数列的公比为$\frac{n-p}{k-n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.机器人“海宝”在某圆形区域表演“按指令行走”,如图所示,“海宝”从圆心出发,先沿北偏西θ(sinθ=$\frac{12}{13}$)方向行走13米至点A处,再沿正南方向行走14米至点B处,最后沿正东方向行走至点C处,点B,C都在圆上,则在以线段BC中点为坐标原点O,正东方向为x轴正方向,正北方向为y轴正方向的直角坐标系中,圆的标准方程为x2+(y-9)2=225.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若函数f(x)=x3+x2+mx+1是R上的单调函数,则实数m的取值范围是[$\frac{1}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.中国古代数学家刘徽在《九章算术注》中,称一个正方体内两个互相垂直的内切圆柱所围成的立体为“牟合方盖”,如图(1)(2),刘徽未能求得牟合方盖的体积,直言“欲陋形措意,惧失正理”,不得不说“敢不阙疑,以俟能言者”.约200年后,祖冲之的儿子祖暅提出“幂势既同,则积不容异”,后世称为祖暅原理,即:两等高立体,若在每一等高处的截面积都相等,则两立体体积相等.如图(3)(4),祖暅利用八分之一正方体去掉八分之一牟合方盖后的几何体与长宽高皆为八分之一正方体的边长的倒四棱锥“等幂等积”,计算出牟合方盖的体积,据此可知,牟合方盖的体积与其外切正方体的体积之比为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{8}{3}$D.$\frac{16}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知实数x,y满足(3-10i)y+(-2+i)x=1-9i求:
(1)实数x,y的值;
(2)若复数Z=x+(y-2)i;求$\frac{z}{i}$ 及$|{\overline z}|$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数y=$\frac{1}{4}cos2x+\frac{{\sqrt{3}}}{4}$sin2x,x∈R.
(1)当函数y取得最大值时,求自变量x的集合;
(2)该函数的图象可由y=sinx(x∈R)的图象经过怎样的平移和伸缩变换得到?

查看答案和解析>>

同步练习册答案