精英家教网 > 高中数学 > 题目详情
13.已知实数x,y满足(3-10i)y+(-2+i)x=1-9i求:
(1)实数x,y的值;
(2)若复数Z=x+(y-2)i;求$\frac{z}{i}$ 及$|{\overline z}|$.

分析 (1)把等式左边变形,由复数相等的条件列式求得x,y值;
(2)把x,y值代入z=x+(y-2)i,再由复数代数形式的乘除运算求$\frac{z}{i}$,由复数模的计算公式求$|{\overline z}|$.

解答 解:(1)由(3-10i)y+(-2+i)x=1-9i,得
(3y-2x)-(10y-x)i=1-9i,
∴$\left\{\begin{array}{l}{3y-2x=1}\\{10y-x=9}\end{array}\right.$,解得x=1,y=1;
(2)z=x+(y-2)i=1-i,
∴$\frac{z}{i}=\frac{1-i}{i}=\frac{(1-i)(-i)}{-{i}^{2}}=-1-i$,
$\overline{z}=1+i$,则|$\overline{z}$|=$\sqrt{2}$.

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,考查复数相等的条件,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知曲线C上任一点M(x,y)到点E(-1,$\frac{1}{4}$)和直线a:y=-$\frac{1}{4}$的 距离相等,圆D:(x-1)2+(y-$\frac{1}{2}$)2=r2(r>))
(Ⅰ)求曲线C的方程;
(Ⅱ)过点A(-2,1)作曲线C的切线b,并与圆D相切,求半径r;
(Ⅲ)若曲线C与圆D恰有一个公共点B(x0,(x0+1)2),且在B点处两曲线的切线为同一直线d,求半径r.这时,你认为曲线C与圆D共有几条公切线(不必证明)?(注:公切线是与两曲线都相切的直线,切点可以不同.)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图是一个几何体的三视图,则该几何体的体积是(  )
A.$\sqrt{3}$B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知集合A={x|x2-16<0},B={x|x2-4x-5≥0}.
( I)求A∩B,A∪B;
( II)求A∩(∁RB).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列说法正确的是(  )
A.当f′(x0)=0时,f(x0)为f(x)的极大值B.当f′(x0)=0时,f(x0)为f(x)的极小值
C.当f′(x0)=0时,f(x0)为f(x)的极值D.当f(x0)为f(x)的极值时,f′(x0)=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={1,2,3,…,2017},B={${a_1},{a_{{2_{\;}}}},{a_3},{a_4},{a_5}$}.若B⊆A,且对任意的i,j(i∈{1,2,3,4,5},j∈{1,2,3,4,5}),都有|ai-aj|≠1.则集合B的个数用组合数可以表示成(  )
A.C${\;}_{2014}^{5}$B.$C_{2013}^5$C.$C_{2012}^5$D.C${\;}_{2011}^{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.为考察数学成绩与物理成绩的关系,在高二随机抽取了300名学生.得到下面列联表:
数学
物理
85~100分85分以下合计
85~100分3785122
85分以下35143178
合计72228300
现判断数学成绩与物理成绩有关系,则判断的出错率为(  )
附表:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
A.0.5%B.1%C.2%D.5%

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.用长为36m的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如果α的终边过点(2sin30°,-2cos30°),那么sinα=(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步练习册答案