分析 (Ⅰ)由已知利用同角三角函数基本关系式可求sinB,利用正弦定理即可解得sinC的值.
(Ⅱ)在△ABC中,设BC=a,AC=b,由余弦定理可得:b2=a2+4-$\frac{4a}{3}$,①,由于cos∠ADB=-cos∠BDC,利用余弦定理可得$\frac{{b}^{2}}{3}$-a2=-6,②,联立即可得解BC的值.
解答 (本题满分为10分)
解:(Ⅰ)∵cosB=$\frac{1}{3}$,
∴sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{2\sqrt{2}}{3}$,…2分
∵$\frac{AB}{sinC}=\frac{AC}{sinB}$,且AC=2$\sqrt{2}$,AB=2,
∴sinC=$\frac{AB•sinB}{AC}$=$\frac{2}{3}$…4分
(Ⅱ)在△ABC中,设BC=a,AC=b,
∵AB=2,cosB=$\frac{1}{3}$,
∴由余弦定理可得:b2=a2+4-$\frac{4a}{3}$,①…6分
在△ABD和△BCD中,由余弦定理可得:
cos∠ADB=$\frac{\frac{4{b}^{2}}{9}+\frac{16}{3}-4}{2×\frac{2b}{3}×\frac{4\sqrt{3}}{3}}$,cos∠BDC=$\frac{\frac{{b}^{2}}{9}+\frac{16}{3}-{a}^{2}}{2×\frac{b}{3}×\frac{4\sqrt{3}}{3}}$,…7分
∵cos∠ADB=-cos∠BDC,
∴$\frac{\frac{4{b}^{2}}{9}+\frac{16}{3}-4}{2×\frac{2b}{3}×\frac{4\sqrt{3}}{3}}$=-$\frac{\frac{{b}^{2}}{9}+\frac{16}{3}-{a}^{2}}{2×\frac{b}{3}×\frac{4\sqrt{3}}{3}}$,解得:$\frac{{b}^{2}}{3}$-a2=-6,②…9分
∴由①②可得:a=3,b=3,即BC的值为3…10分
点评 本题主要考查了同角三角函数基本关系式,正弦定理,余弦定理在解三角形中的应用,考查了计算能力和转化思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | -586 | B. | -588 | C. | -590 | D. | -504 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=|sinx| | B. | y=sinxcosx | C. | y=|tanx| | D. | y=cos4x |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{9}{16}$ | B. | $\frac{9}{16}$ | C. | $-\frac{7}{16}$ | D. | $\frac{7}{16}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | b<a<c | B. | a<b<c | C. | a<c<b | D. | b<c<a |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com