精英家教网 > 高中数学 > 题目详情
若函数y=sin(ωxφ)(ω>0)的部分图象如图,则ω=(  )
A.5B.4C.3D.2
B
设函数的最小正周期为T,由函数图象可知x0,所以T.又因为T,可解得ω=4.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知点在函数的图象上,直线图象的任意两条对称轴,且的最小值为.
(1)求函数的单递增区间和其图象的对称中心坐标;
(2)设,若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=-sin2ωx-sinωxcosωx(ω>0),且y=f(x)图象的一个对称中心到最近的对称轴的距离为.
(1)求ω的值;
(2)求f(x)在区间[π,]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,0<φ<)的周期为π,且图象上有一个最低点为M.
(1)求f(x)的解析式;
(2)求函数y=f(x)+f的最大值及对应x的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知x0x0是函数f(x)=cos2-sin2ωx(ω>0)的两个相邻的零点.
(1)求f的值;
(2)若对?x,都有|f(x)-m|≤1,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数y=tan ωx(ω>0)与直线ya相交于AB两点,且|AB|最小值为π,则函数f(x)=sin ωx-cos ωx的单调增区间是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

的图象的一条对称轴,则可以是(   )
A.4B.8 C.2 D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=2sin2cos 2x-1(x∈R).
(1)若函数h(x)=f(xt)的图象关于点对称,且t∈(0,π),求t的值;
(2)设pxq:|f(x)-m|<3,若pq的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=Asin(ωx+φ)(A>0,ω>0)的最小正周期为2,且当x=时,f(x)的最大值为2.
(1)求f(x)的解析式.
(2)在闭区间[,]上是否存在f(x)的对称轴?如果存在求出其对称轴.若不存在,请说明理由.

查看答案和解析>>

同步练习册答案