精英家教网 > 高中数学 > 题目详情
若f(cosθ)=sin2θ-3sinθ,则f(2cos
π
3
)=
 
考点:函数的值
专题:函数的性质及应用
分析:由f(2cos
π
3
)=f(cos0),利用已知条件能求出结果.
解答: 解:∵2cos
π
3
=1=cos0,f(cosθ)=sin2θ-3sinθ,
∴f(2cos
π
3
)=f(cos0)=sin20-3sin0=0.
故答案为:0.
点评:本题考查函数值的求法,是基础题,解题时要认真审题,注意三角函数性质的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一个正方形的中心到各顶点的连线,能构成多少个向量?试写出所构成的全部向量;若正方形的边长为1,求所有向量的模.

查看答案和解析>>

科目:高中数学 来源: 题型:

用一个边长为4的正三角形硬纸,沿各边中点连线垂直折起三个小三角形,做成一个蛋托,半径为1的鸡蛋(视为球体)放在其上(如图),则鸡蛋中心(球心)与蛋托底面的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}中,a1=3,公差d∈N*,等比数列{bn}中,b1=a1,b2=a2,若要使{bn}的所有项都是{an}中的项,则满足条件的公差d的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线ax-my+2a=0(a≠0)过点(1,3),则该直线的倾斜角为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,如果输入a=2,b=2,那么输出的a值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆锥底面圆的周长为4π,侧棱与底面所成角的大小为arctan2,则该圆锥的体积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

正四面体ABCD,线段AB∥平面α,E,F分别是线段AD和BC的中点,当正四面体绕以AB为轴旋转时,则线段AB与EF在平面α上的射影所成角余弦值的范围是(  )
A、[0,
2
2
]
B、[
2
2
,1]
C、[
1
2
,1]
D、[
1
2
2
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C1的参数方程是
x=cosθ
y=2sinθ
(θ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=-2cosθ.
(Ⅰ)写出C1的极坐标方程和C2的直角坐标方程;
(Ⅱ)已知点M1、M2的极坐标分别是(1,π)、(2,
π
2
),直线M1M2与曲线C2相交于P、Q两点,射线OP与曲线C1相交于点A,射线OQ与曲线C1相交于点B,求
1
丨OA2
+
1
丨OB2
的值.

查看答案和解析>>

同步练习册答案