【题目】已知椭圆
的两个焦点与短轴的一个端点是等边三角形的三个顶点,且长轴长为4
(1)求椭圆
的方程;
(2)若
是椭圆
的左顶点,经过左焦点
的直线
与椭圆
交于
、
两点,求
与
的面积之差的绝对值的最大值,并求取得最大值时直线
的方程.
为坐标原点)
科目:高中数学 来源: 题型:
【题目】如图,
,
,…,
是曲线
:
上的点,
,
,…,
是
轴正半轴上的点,且
,
,…,
均为斜边在
轴上的等腰直角三角形(
为坐标原点).
![]()
(1)写出
、
和
之间的等量关系,以及
、
和
之间的等量关系;
(2)猜测并证明数列
的通项公式;
(3)设
,集合
,
,若
,求实常数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
的焦点为F,点
在此抛物线上,
,不过原点的直线
与抛物线C交于A,B两点,以AB为直径的圆M过坐标原点.
(1)求抛物线C的方程;
(2)证明:直线
恒过定点;
(3)若线段AB中点的纵坐标为2,求此时直线
和圆M的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义
,
,…,
的“倒平均数”为
.
(1)若数列
前
项的“倒平均数”为
,求
的通项公式;
(2)设数列
满足:当
为奇数时,
,当
为偶数时,
.若
为
前
项的倒平均数,求
;
(3)设函数
,对(1)中的数列
,是否存在实数
,使得当
时,
对任意
恒成立?若存在,求出最大的实数
;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知离心率为
的椭圆
(a>b>0)过点M(
,1).
(1)求椭圆的方程.
(2)已知与圆x2+y2=
相切的直线l与椭圆C相交于不同两点A,B,O为坐标原点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
,
为左焦点,
为上顶点,
为右顶点,若
,抛物线
的顶点在坐标原点,焦点为
.
(1)求
的标准方程;
(2)是否存在过
点的直线,与
和
交点分别是
和
,使得
?如果存在,求出直线的方程;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业生产一种产品,从流水线上随机抽取100件产品,统计其质量指标值并绘制频率分布直方图(如图):
![]()
规定产品的质量指标值在
的为劣质品,在
的为优等品,在
的为特优品,销售时劣质品每件亏损1元,优等品每件盈利3元,特优品每件盈利5元.以这100 件产品的质量指标值位于各区间的频率代替产品的质量指标值位于该区间的概率.
(1)求每件产品的平均销售利润;
(2)该企业为了解年营销费用
(单位:万元)对年销售量
(单位:万件)的影响,对近5年年营销费用
和年销售量
数据做了初步处理,得到如图的散点图及一些统计量的值.
|
|
|
|
16.30 | 23.20 | 0.81 | 1.62 |
表中
,
,
,
.
根据散点图判断,
可以作为年销售量
(万件)关于年营销费用
(万元)的回归方程.
①求
关于
的回归方程;
⑦用所求的回归方程估计该企业应投人多少年营销费,才能使得该企业的年收益的预报值达到最大?(收益=销售利润营销费用,取
)
附:对于一组数据
,
,…,
其回归直线
均斜率和截距的最小二乘估计分别为
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某企业有职工5000人,其中男职工3500人,女职工1500人.该企业为了丰富职工的业余生活,决定新建职工活动中心,为此,该企业工会采用分层抽样的方法,随机抽取了300名职工每周的平均运动时间(单位:h),汇总得到频率分布表(如表所示),并据此来估计该企业职工每周的运动时间:
平均运动时间 | 频数 | 频率 |
[0,2) | 15 | 0.05 |
[2,4) | m | 0.2 |
[4,6) | 45 | 0.15 |
[6,8) | 755 | 0.25 |
[8,10) | 90 | 0.3 |
[10,12) | p | n |
合计 | 300 | 1 |
(1)求抽取的女职工的人数;
(2)①根据频率分布表,求出m、n、p的值,完成如图所示的频率分布直方图,并估计该企业职工每周的平均运动时间不低于4h的概率;
男职工 | 女职工 | 总计 | |
平均运动时间低于4h | |||
平均运动时间不低于4h | |||
总计 |
②若在样本数据中,有60名女职工每周的平均运动时间不低于4h,请完成以下2×2列联表,并判断是否有95%以上的把握认为“该企业职工毎周的平均运动时间不低于4h与性别有关”.
附:K2=
,其中n=a+b+c+d.
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com