精英家教网 > 高中数学 > 题目详情

【题目】数列{an}是首项a1=4的等比数列,且S3 , S2 , S4成等差数列,
(1)求数列{an}的通项公式;
(2)若bn=log2|an|,设Tn为数列 的前n项和,若Tn≤λbn+1对一切n∈N*恒成立,求实数λ的最小值.

【答案】
(1)解:∵S3,S2,S4成等差数列

∴2S2=S3+S4即2(a1+a2)=2(a1+a2+a3)+a4

所以a4=﹣2a3

∴q=﹣2

an=a1qn1=(﹣2)n+1


(2)解:bn=log2|an|=log22n+1=n+1

=

Tn=( )+( )+…+( )=

λ≥ = = ×

因为n+ ≥4,所以 ×

所以λ最小值为


【解析】(1)根据S3 , S2 , S4成等差数列建立等式关系,然后可求出公比q,根据等比数列的性质求出通项公式即可;(2)先求出数列bn的通项公式,然后利用裂项求和法求出数列 的前n项和Tn , 将λ分离出来得λ≥ ,利用基本不等式求出不等式右侧的最大值即可求出所求.
【考点精析】通过灵活运用等比数列的通项公式(及其变式)和等差数列的性质,掌握通项公式:;在等差数列{an}中,从第2项起,每一项是它相邻二项的等差中项;相隔等距离的项组成的数列是等差数列即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设ai∈R+ , xi∈R+ , i=1,2,…n,且a12+a22+…an2=1,x12+x22+…xn2=1,则 的值中,现给出以下结论,其中你认为正确的是 . ①都大于1②都小于1③至少有一个不大于1④至多有一个不小于1⑤至少有一个不小于1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱为长方体,点上的一点.

(1)若的中点,当为何值时,平面平面

(2)若 ,当时,直线与平面所成角的正弦值是否存在最大值?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读如图所示的程序框图,运行相应的程序.若输入m的值为2,则输出的结果i=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项等差数列{an}的前n项和为Sn , 且满足 ,S7=56. (Ⅰ)求数列{an}的通项公式an
(Ⅱ)若数列{bn}满足b1=a1且bn+1﹣bn=an+1 , 求数列 的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知: 是同一平面上的三个向量,其中 =(1,2).
(1)若| |=2 ,且 ,求 的坐标.
(2)若| |= ,且 +2 与2 垂直,求 的夹角θ

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2cosx(sinx﹣cosx)+1,x∈R.
(1)求函数f(x)的单调递增区间;
(2)将函数y=f(x)的图象向左平移 个单位后,再将图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的最大值及取得最大值时的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若P为椭圆 =1上任意一点,F1 , F2为左、右焦点,如图所示.

(1)若PF1的中点为M,求证:|MO|=5﹣ |PF1|;
(2)若∠F1PF2=60°,求|PF1||PF2|之值;
(3)椭圆上是否存在点P,使 =0,若存在,求出P点的坐标,若不存在,试说明理由.

查看答案和解析>>

同步练习册答案