【题目】对于数列
,
,
为数列
是前
项和,且
,
,
.
(1)求数列
,
的通项公式;
(2)令
,求数列
的前
项和
.
科目:高中数学 来源: 题型:
【题目】如图,直角梯形
与等腰直角三角形
所在的平面互相垂直,
.
![]()
(1)求直线
与平面
所成角的正弦值;
(2)线段
上是否存在点
,使
平面
?若存在,求出
;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,事件“至少1名女生”与事件“全是男生”( )
A.是互斥事件,不是对立事件
B.是对立事件,不是互斥事件
C.既是互斥事件,也是对立事件
D.既不是互斥事件也不是对立事件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】城市公交车的数量若太多则容易造成资源的浪费;若太少又难以满足乘客需求.某市公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间作为样本分成5组,如下表所示(单位:分钟):
组别 | 候车时间 | 人数 |
一 |
| 2 |
二 |
| 6 |
三 |
| 4 |
四 |
| 2 |
五 |
| 1 |
(1)估计这60名乘客中候车时间少于10分钟的人数;
(2)若从上表第三、四组的6人中任选2人作进一步的调查,求抽到的两人恰好来自不同组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】机床厂今年年初用98万元购进一台数控机床,并立即投入生产使用,计划第一年维修、保养费用12万元,从第二年开始,每年所需维修、保养费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利额为y万元.
(Ⅰ)写出y与x之间的函数关系式;
(Ⅱ)从第几年开始,该机床开始盈利(盈利额为正值);
(Ⅲ)使用若干年后,对机床的处理方案有两种:
(1)当年平均盈利额达到最大值时,以30万元价格处理该机床;
(2)当盈利额达到最大值时,以12万元价格处理该机床.
请你研究一下哪种方案处理较为合理?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为及时了解适龄公务员对开放生育二胎政策的态度,某部门随机调查了90位30岁到40岁的公务员,得到情况如下表:
(1)判断是否有99%以上的把握认为“生二胎意愿与性别有关”,并说明理由;
(2)现把以上频率当作概率,若从社会上随机独立抽取三位30岁到40岁的男公务员访问,求这三人中至少有一人有意愿生二胎的概率.
(3)已知15位有意愿生二胎的女性公务员中有两位来自省妇联,该部门打算从这15位有意愿生二胎的女性公务员中随机邀请两位来参加座谈,设邀请的2人中来自省女联的人数为
,求
的分布列及数学期望
.
男性公务员 | 女性公务员 | 总计 | |
有意愿生二胎 | 30 | 15 | 45 |
无意愿生二胎 | 20 | 25 | 45 |
总计 | 50 | 40 | 90 |
附:![]()
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知矩形
,将
沿矩形的对角线
所在的直线进行翻折,在翻折过程中 ( )
A. 存在某个位置,使得直线
与直线
垂直
B. 存在某个位置,使得直线
与直线
垂直
C. 存在某个位置,使得直线
与直线
垂直
D. 对任意位置,三对直线“
与
”,“
与
”,“
与
”均不垂直
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的两个焦点与短轴的一个端点是等边三角形的三个顶点,且长轴长为4.
(1)求椭圆
的方程;
(2)若
是椭圆
的左顶点,经过左焦点
的直线
与椭圆
交于
,
两点,求
与
的面积之差的绝对值的最大值.(
为坐标原点)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com