精英家教网 > 高中数学 > 题目详情

【题目】已知矩形,将 沿矩形的对角线 所在的直线进行翻折,在翻折过程中 (  )

A. 存在某个位置,使得直线与直线垂直

B. 存在某个位置,使得直线与直线垂直

C. 存在某个位置,使得直线与直线垂直

D. 对任意位置,三对直线“”,“”,“”均不垂直

【答案】C

【解析】如图,,依题意,,若存在某个位置,使得直线与直线垂直,

则∵,∴平面,从而,这与已知矛盾,排除A;

B,若存在某个位置,使得直线与直线垂直,则平面,从而平面平面,即在底面上的射影应位于线段上,这是不可能的,排除
C,若存在某个位置,使得直线与直线垂直,则平面,平面平面,取中点,连接,则,∴就是二面角的平面角,此角显然存在,即当在底面上的射影位于的中点时,直线与直线垂直,故C正确; D,由上所述,可排除D;故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某制造厂商10月份生产了一批乒乓球,从中随机抽取个进行检查,测得每个球的直径(单位:),将数据进行分组,得到如下频率分布表:

1)求的值,并画出频率分布直方图(结果保留两位小数);

2)已知标准乒乓球的直径为,且称直径在内的乒乓球为五星乒乓球,若这批乒乓球共有个,试估计其中五星乒乓球的数目;

3)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是)作为代表,试估计这批乒乓球直径的平均值和中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于数列为数列是前项和,且.

(1)求数列的通项公式;

(2)令,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线的焦点,

求椭圆C的标准方程;

过椭圆C的右焦点作直线l交椭圆C于A、B两点,交y轴于M点,若为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1是在定义域内的增函数,求的取值范围;

2若函数其中的导函数存在三个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校举办运动会时,高一(1)班有28名同学参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳和田径比赛的有3人,同时参加游泳和球类比赛的有3人,没有人同时参加三项比赛.则同时参加田径和球类比赛的人数是( ).

A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学生在开学季准备销售一种文具盒进行试创业,在一个开学季内,每售出1盒该产品获利润50元,未售出的产品,每盒亏损30元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季购进了160盒该产品,以(单位:盒,)表示这个开学季内的市场需求量,(单位:元)表示这个开学季内经销该产品的利润.

1)根据直方图估计这个开学季内市场需求量和中位数;

2)将表示为的函数;

3)根据直方图估计利润不少于4800元的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,该函数图像过点,与点相邻函数图像上的一个最高点为

(1)求该函数的解析式

(2)求函数在区间上的最值及其对应的自变量的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司过去五个月的广告费支出与销售额(单位:万元)之间有下列对应数据:


2

4

5

6

8



40

60

50

70

工作人员不慎将表格中的第一个数据丢失.已知呈线性相关关系,且回归方程为,则下列说法:销售额与广告费支出正相关;丢失的数据(表中处)为30该公司广告费支出每增加1万元,销售额一定增加万元;若该公司下月广告投入8万元,则销售

额为70万元.其中,正确说法有( )

A1B2C3D4

查看答案和解析>>

同步练习册答案