分析 由已知求得f(x)的解析式,再由函数的图象平移得到y=2sin(x+m-$\frac{π}{3}$),由所得到图象关于y轴对称得$m-\frac{π}{3}=\frac{π}{2}+kπ$,取k=0得答案.
解答 解:由已知可得$y=f(x)=|{\begin{array}{l}{sinx}&{\sqrt{3}}\\{cosx}&1\end{array}}|$=sinx$-\sqrt{3}cosx$=$2sin(x-\frac{π}{3})$.
函数y=f(x)向左平移m(m>0)个单位长度后,所得函数解析式为y=2sin(x+m-$\frac{π}{3}$).
∵所得到图象关于y轴对称,
∴$m-\frac{π}{3}=\frac{π}{2}+kπ$,得m=$\frac{5π}{6}+kπ$,k∈Z.
当k=0时,m的最小值是$\frac{5π}{6}$.
故答案为:$\frac{5}{6}π$.
点评 本题考查y=Asin(ωx+φ)型函数的图象平移和性质,是基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5π | B. | 13π | C. | 17π | D. | 25π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ±1 | B. | $±\sqrt{2}$ | C. | $±\frac{{\sqrt{2}}}{2}$ | D. | $±\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 一个命题的逆命题为真,则它的逆否命题一定为真 | |
| B. | 若“a>b”,则“a•c>b•c” | |
| C. | “a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0” | |
| D. | 一个命题的否命题为真,则它的逆命题一定为真 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com