精英家教网 > 高中数学 > 题目详情
20.圆(x-3)2+(y+4)2=2关于直线y=0对称的圆的方程是(  )
A.(x+3)2+(y-4)2=2B.(x-4)2+(y+3)2=2C.(x+4)2+(y-3)2=2D.(x-3)2+(y-4)2=2

分析 求出圆的圆心坐标关于对称轴的坐标,得到对称圆的圆心以及半径,即可求出圆的方程.

解答 解:圆(x-3)2+(y+4)2=2的圆心坐标(3,-4),半径为$\sqrt{2}$.
圆心关于直线y=0对称的圆的圆心坐标为(3,4),对称圆的半径为$\sqrt{2}$,
所求圆的方程为:(x-3)2+(y-4)2=2.
故选D.

点评 本题考查圆的方程的求法,对称知识的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.在△ABC中,角A,B,C所对的边分别为a,b,c,已知$\overrightarrow{AB}$•$\overrightarrow{AC}$=$\overrightarrow{BA}$•$\overrightarrow{BC}$,sinA=$\frac{3}{5}$.
(1)求sinC的值;
(2)设D为AC的中点,若△ABC的面积为6,求BD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知$\overrightarrow m$=(cosx+$\sqrt{3}sinx$,1),$\overrightarrow n$=(2cosx,a)(x,a∈R,a为常数)
(1)求$y=\overrightarrow m•\overrightarrow n$关于x的函数关系式y=f(x);
(2)求f(x)的单调递增区间;
(3)若$x∈[0,\frac{π}{2}]$上,f(x)的最大值为4,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知变量x,y满足约束条件$\left\{{\begin{array}{l}{x+2y≥2}\\{2x+y≤4}\\{4x-y≥-1}\end{array}}\right.$,则z=3x-y+2的最大值是8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知i为虚数单位,a为实数,复数z=(a-2i)i在复平面内对应的点为M,则“a<-2”是“点M在第四象限”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x2-(a-1)x-a2
(1)若a=3,x∈[0,2],求f(x)的最值;
(2)若a<0,不等式sin2x+acosx+a2≥1+cosx的解集为R,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x-xlnx,数列{an}满足a1=$\frac{1}{e}$,an+1=f(an),n∈N*,e为自然对数的底数.
(1)求函数f(x)的单调区间;
(2)求证:$\frac{1}{e}≤{a_n}<{a_{n+1}}$<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设f(x)=log3x.
(1)若$g(x)=f({\frac{x+1}{x-1}})$,判断并证明函数y=g(x)的奇偶性;
(2)令$h(x)=f({\sqrt{x}})•f({3x})$,x∈[3,27],当x取何值时h(x)取得最小值,最小值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知△ABC的外接圆半径为R,C=60°,则$\frac{a+b}{R}$的取值范围为$({\sqrt{3},2\sqrt{3}}]$.

查看答案和解析>>

同步练习册答案