分析 先由正弦定理和两角和与差的正弦公式得到$\frac{a+b}{R}$=2$\sqrt{3}$sin(A+30°),再根据正弦函数的图象和性质即可求出.
解答 解:在△ABC中,由正弦定理可得:$\frac{a}{sinA}=\frac{b}{sinB}=2R$,
∴a=2RsinA,b=2RsinB,
∴$\frac{a+b}{R}$=2sinA+2sinB=2sinA+2sin(120°-A)
=2(sinA+$\frac{\sqrt{3}}{2}$cosA+$\frac{1}{2}$sinA)=2$\sqrt{3}$($\frac{\sqrt{3}}{2}$sinA+$\frac{1}{2}$cosA)=2$\sqrt{3}$sin(A+30°),
∵C=60°,
∴0°<A<120°,
∴30°<A+30°<150°,
∴$\frac{1}{2}$<sin(A+30°)≤1,
∴$\sqrt{3}$<2$\sqrt{3}$sin(A+30°)≤2$\sqrt{3}$,则$\frac{a+b}{R}$的取值范围为$({\sqrt{3},2\sqrt{3}}]$.
故答案为:$({\sqrt{3},2\sqrt{3}}]$.
点评 本题考查了正弦定理和两角和差的正弦公式以及诱导公式在解三角形中的应用,考查了转化思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (x+3)2+(y-4)2=2 | B. | (x-4)2+(y+3)2=2 | C. | (x+4)2+(y-3)2=2 | D. | (x-3)2+(y-4)2=2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若-2≤m<0,则函数f(x)=-x2+mx在区间(-4,-1)上单调递增 | |
| B. | “1≤x≤4”是“${log_{\frac{1}{5}}}$x≥-1”的充分不必要条件 | |
| C. | x=$\frac{π}{3}$是函数f(x)=cos 2x-$\sqrt{3}$sin 2x的一条对称轴 | |
| D. | 若a∈[$\frac{1}{2}$,6),则函数f(x)=$\frac{1}{2}$x2-alnx在区间(1,3)上有极值 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若“p且q”为假,则p,q至少有一个是假命题 | |
| B. | 命题“?x∈R,x2-x-1<0”的否定是““?x∈R,x2-x-1≥0” | |
| C. | 设A,B是两个集合,则“A⊆B”是“A∩B=A”的充分不必要条件 | |
| D. | 当a<0时,幂函数y=xa在(0,+∞)上单调递减 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com