【题目】某公司订购了一批树苗,为了检测这批树苗是否合格,从中随机抽测
株树苗的高度,经数据处理得到如图1所示的频率分布直方图,其中最高的
株树苗的高度的茎叶图如图2所示,以这
株树苗的高度的频率估计整批树苗高度的概率.
![]()
(1)求这批树苗的高度于
米的概率,并求图
中
的值;
(2)若从这批树苗中随机选取
株,记
为高度在
的树苗数量,求
的分布列和数学期望;
(3)若变量
满足
且
,则称变量
满足近似于正态分布
的概率分布,如果这批树苗的高度近似于正态分布
的概率分布,则认为这批树苗是合格的,将顺利被签收,否则,公司将拒绝签收.试问:该批树苗是否被签收?
【答案】(1)概率为
,
,
,
(2)详见解析(3)将顺利被公司签收
【解析】
(1)由图2可知,
株样本树苗中高度高于
米的共有
株,以样本的频率估计总体的概率,可知这批树苗的高度高于
米的概率为
,记
为树苗的高度,结合图1,图2求得
,
,
,
,即可求得答案;
(2)以样本的频率估计总体的概率,可得这批树苗中随机选取
株,高度在
的概率为
,因为从树苗数量这批树苗中随机选取
株,相当于三次独立重复试验,可得随机变量
,即可求的分布列,进而求得
;
(3)利用条件,计算出
,从而给出结论.
(1)由图2可知,
株样本树苗中高度高于
米的共有
株,
以样本的频率估计总体的概率,可知这批树苗的高度高于
米的概率为
,
记
为树苗的高度,结合图1,图2可得:
,
,
,
组距为
,
![]()
,
,
.
(3)以样本的频率估计总体的概率,可得这批树苗中随机选取
株,高度在
的概率为
,
因为从树苗数量这批树苗中随机选取
株,相当于三次独立重复试验,
随机变量
,分布列为:
| 0 | 1 | 2 | 3 | 4 |
| 0.0081 | 0.0756 | 0.2646 | 0.4116 | 0.2401 |
![]()
.
(3)由
,取
,
,
由(2)可知
,
又
结合(1)可得
,
这批树苗的高度近似于正态分布
的概率分布,应该认为这批树苗是合格的,将顺利被公司签收.
科目:高中数学 来源: 题型:
【题目】已知点
,点
,点
,动圆
与
轴相切于点
,过点
的直线
与圆
相切于点
,过点
的直线
与圆
相切于点
(
均不同于点
),且
与
交于点
,设点
的轨迹为曲线
.
(1)证明:
为定值,并求
的方程;
(2)设直线
与
的另一个交点为
,直线
与
交于
两点,当
三点共线时,求四边形
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图两个同心球,球心均为点
,其中大球与小球的表面积之比为3:1,线段
与
是夹在两个球体之间的内弦,其中
两点在小球上,
两点在大球上,两内弦均不穿过小球内部.当四面体
的体积达到最大值时,此时异面直线
与
的夹角为
,则
( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在等腰
中,
,
,
分别为
,
的中点,
为
的中点,
在线段
上,且
。将
沿
折起,使点
到
的位置(如图2所示),且
。
![]()
(1)证明:
平面
;
(2)求平面
与平面
所成锐二面角的余弦值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P–ABCD中,PA⊥平面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC=3.E为PD的中点,点F在PC上,且
.
(Ⅰ)求证:CD⊥平面PAD;
(Ⅱ)求二面角F–AE–P的余弦值;
(Ⅲ)设点G在PB上,且
.判断直线AG是否在平面AEF内,说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于很多人来说,提前消费的认识首先是源于信用卡,在那个工资不高的年代,信用卡绝对是神器,稍微大件的东西都是可以选择用信用卡来买,甚至于分期买,然后慢慢还!现在银行贷款也是很风靡的,从房贷到车贷到一般的现金贷.信用卡“忽如一夜春风来”,遍布了各大小城市的大街小巷.为了解信用卡在
市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了100人进行抽样分析,得到如下
列联表(单位:人)
经常使用信用卡 | 偶尔或不用信用卡 | 合计 | |
40岁及以下 | 15 | 35 | 50 |
40岁以上 | 20 | 30 | 50 |
合计 | 35 | 65 | 100 |
(1)根据以上数据,能否在犯错误的概率不超过0.10的前提下认为
市使用信用卡情况与年龄有关?
(2)①现从所抽取的40岁及以下的网民中,按“经常使用”与“偶尔或不用”这两种类型进行分层抽样抽取10人,然后,再从这10人中随机选出4人赠送积分,求选出的4人中至少有3人偶尔或不用信用卡的概率;
②将频率视为概率,从
市所有参与调查的40岁以上的网民中随机抽取3人赠送礼品,记其中经常使用信用卡的人数为
,求随机变量
的分布列、数学期望和方差.
参考公式:
,其中
.
参考数据:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
是两个非零平面向量,则有:
①若
,则![]()
②若
,则![]()
③若
,则存在实数
,使得![]()
④若存在实数
,使得
,则
或
四个命题中真命题的序号为 __________.(填写所有真命题的序号)
【答案】①③④
【解析】逐一考查所给的结论:
①若
,则
,据此有:
,说法①正确;
②若
,取
,则
,
而
,说法②错误;
③若
,则
,据此有:
,
由平面向量数量积的定义有:
,
则向量
反向,故存在实数
,使得
,说法③正确;
④若存在实数
,使得
,则向量
与向量
共线,
此时
,
,
若题中所给的命题正确,则
,
该结论明显成立.即说法④正确;
综上可得:真命题的序号为①③④.
点睛:处理两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.
【题型】填空题
【结束】
17
【题目】已知在
中,
,且
.
(1)求角
的大小;
(2)设数列
满足
,前
项和为
,若
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥
,
,在平行四边形
中,
,Q为
上的点,过
的平面分别交
,
于点E、F,且
平面
.
![]()
(1)证明:
;
(2)若
,
,Q为
的中点,
与平面
所成角的正弦值为
,求平面
与平面
所成锐二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com