分析 根据条件画出图形,并连接D1B1,可以判断出∠B1BD1为异面直线BD1与CC1所成的角,从而在Rt△BB1D1中可求出cos∠B1BD1,进而便可得出∠B1BD1的大小.
解答
解:如图,连接D1B1;
∵CC1∥BB1;
∴BD1与CC1所成角等于BD1与BB1所成角;
∴∠B1BD1为异面直线BD1与CC1所成角;
∴在Rt△BB1D1中,cos∠B1BD1=$\frac{B{B}_{1}}{B{D}_{1}}=\frac{\sqrt{2}}{\sqrt{1+1+2}}=\frac{\sqrt{2}}{2}$;
∴异面直线BD1与CC1所成角的大小为$\frac{π}{4}$.
故答案为:$\frac{π}{4}$.
点评 考查异面直线及异面直线所成角的概念,三角函数的定义,已知三角函数值求角.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -15 | B. | -3 | C. | 3 | D. | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若|$\overrightarrow{a}$|确定,则θ唯一确定 | B. | 若|$\overrightarrow{b}$|确定,则θ唯一确定 | ||
| C. | 若θ确定,则|$\overrightarrow{b}$|唯一确定 | D. | 若θ确定,则|$\overrightarrow{a}$|唯一确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | 3 | D. | $\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com