精英家教网 > 高中数学 > 题目详情
19.某几何体的三视图如图所示,则其表面积为(  )
A.$\frac{\sqrt{3}π}{2}$+3B.$\frac{3π}{2}$C.π+$\sqrt{3}$D.$\frac{3π}{2}$+$\sqrt{3}$

分析 由三视图知几何体为半个圆锥,根据三视图的数据求底面面积与高,代入棱锥的表面积公式计算.

解答 解:由三视图知几何体为半个圆锥,圆锥的底面圆半径为1,高为$\sqrt{3}$,
∴圆锥的母线长为2,
∴几何体的表面积S=$\frac{1}{2}$×π×12+$\frac{1}{2}$×π×1×2+$\frac{1}{2}$×2×$\sqrt{3}$=$\frac{3π}{2}$+$\sqrt{3}$
故选:D.

点评 本题考查了由三视图求几何体的表面积,考查了圆锥的侧面积公式,解题的关键是由三视图判断几何体的形状及三视图的数据所对应的几何量.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.设矩形ABCD(AB>AD)的周长为24,把△ABC沿AC向△ADC折叠,AB折过去后交DC于点P,设AB=x,求△ADP的最大面积及相应x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=acosx+bcos2x+1.
(1)当b=1,a=1时,求函数f(x)的值域;
(2)若a=1,对任意的实数x函数f(x)≥0恒成立,求实数b的取值范围;
(3)若b=1,存在实数x使得函数|f(x)|≥a2成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=|ex-1|,若存在实数x使得f(x)≤ax-1成立,则正实数a的取值范围是(  )
A.[1,e]B.[e,+∞)C.(0,e]D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=2ex+2ax-a2,a∈R.
(1)求函数f(x)的单调区间和极值;
(2)若x≥0时,f(x)≥x2-3恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\frac{1}{3}$ax3-x2在[1,2]上是增函数,则a的取值范围是[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知g(x)=|x2-ax-a|,若对于任意实数a,存在x0∈[0,1],使得g(x0)≥k成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在下列题中,试判断p是q的什么条件:
p:两个角是对顶角,q:这两个角相等:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知sinθ=$\frac{{2\sqrt{5}}}{5}$,且θ为钝角.
(1)求tanθ;
(2)求$\frac{1}{sin2θ}$+$\frac{2sinθ-cosθ}{sinθ+cosθ}$的值.

查看答案和解析>>

同步练习册答案