【题目】如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,为正三角形,且侧面PAB⊥底面ABCD. E,M分别为线段AB,PD的中点.
(I)求证:PE⊥平面ABCD;
(II)求证:PB//平面ACM;
(III)在棱CD上是否存在点G,使平面GAM⊥平面ABCD,请说明理由.
【答案】(1)见解析;(2)见解析;(3)见解析.
【解析】试题分析:(1)要证线面垂直,可先证线线垂直,再根据线面垂直的判定得到线面垂直;(2)构造三角形的中位线得到线线平行,进而得到线面平行;(3)在棱CD上存在点G,G为CD的中点时,平面GAM⊥平面ABCD,先猜后证,先证线面垂直,由线面推出面面垂直。解析:
(I)证明:因为为正三角形,E为AB的中点,
所以PE⊥AB,
又因为面PAB⊥面ABCD,面PAB∩面ABCD=AB, 平面PAB.
所以PE⊥平面ABCD.
(II)证明:连接BD交AC于H点,连接MH,
因为四边形ABCD是菱形,
所以点H为BD的中点.
又因为M为PD的中点,
所以MH // BP.
又因为 BP 平面ACM, 平面ACM.
所以 PB // 平面ACM.
(III)在棱CD上存在点G,G为CD的中点时,平面GAM⊥平面ABCD.
证明:连接.由(Ⅰ)得,PE⊥平面ABCD,
所以PE⊥CD,因为ABCD是菱形,∠ ABC=60°,E为AB的中点,
所以是正三角形,EC⊥AB .
因为CD // AB,
所以EC⊥CD.
因为PE∩EC=E,
所以CD⊥平面PEC,
所以CD⊥PC.
因为M,G分别为PD,CD的中点,
所以MG//PC,
所以CD⊥MG.
因为ABCD是菱形,∠ADC=60°,
所以是正三角形.
又因为G为CD的中点,
所以CD⊥AG,
因为MG∩AG=G,
所以CD⊥平面MAG,
因为平面ABCD,
所以平面MAG⊥平面ABCD.
科目:高中数学 来源: 题型:
【题目】某公司为了准确把握市场,做好产品计划,特对某产品做了市场调查:先销售该产品50天,统计发现每天的销售量分布在内,且销售量的分布频率
.
(Ⅰ)求的值.
(Ⅱ)若销售量大于等于80,则称该日畅销,其余为滞销,根据是否畅销从这50天中用分层抽样的方法随机抽取5天,再从这5天中随机抽取2天,求这2天中恰有1天是畅销日的概率(将频率视为概率).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2017·石家庄一模)祖暅是南北朝时期的伟大数学家,5世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积都相等,那么这两个几何体的体积一定相等.现有以下四个几何体:图①是从圆柱中挖去一个圆锥所得的几何体,图②、图③、图④分别是圆锥、圆台和半球,则满足祖暅原理的两个几何体为( )
A. ①② B. ①③
C. ②④ D. ①④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的焦点的坐标为, 的坐标为,且经过点, 轴.
(1)求椭圆的方程;
(2)设过的直线与椭圆交于两不同点,在椭圆上是否存在一点,使四边形为平行四边形?若存在,求出直线的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16, ,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推. 设该数列的前项和为,
规定:若 ,使得( ),则称为该数列的“佳幂数”.
(Ⅰ)将该数列的“佳幂数”从小到大排列,直接写出前3个“佳幂数”;
(Ⅱ)试判断50是否为“佳幂数”,并说明理由;
(III)(i)求满足>70的最小的“佳幂数”;
(ii)证明:该数列的“佳幂数”有无数个.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市教育局对该市普通高中学生进行学业水平测试,试卷满分120分,现从全市学生中随机抽查了10名学生的成绩,其茎叶图如下图所示:
(1)已知10名学生的平均成绩为88,计算其中位数和方差;
(2)已知全市学生学习成绩分布服从正态分布,某校实验班学生30人.
①依据(1)的结果,试估计该班学业水平测试成绩在的学生人数(结果四舍五入取整数);
②为参加学校举行的数学知识竞赛,该班决定推荐成绩在的学生参加预选赛若每个学生通过预选赛的概率为,用随机变量表示通过预选赛的人数,求的分布列和数学期望.
正态分布参考数据:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com