| A. | 6 | B. | 8 | C. | 10 | D. | 12 |
分析 由抛物线的焦点坐标,设直线AB的方程,代入抛物线方程,利用韦达定理,弦长公式及点到直线的距离公式,求得k的值,即可求得|AB|.
解答 解:根据题意,抛物线y2=4x的焦点为F(1,0).
设直线AB的斜率为k,可得直线AB的方程为y=k(x-1),
由$\left\{\begin{array}{l}{y=k(x-1)}\\{{y}^{2}=4x}\end{array}\right.$消去x,得y2-$\frac{4}{k}$y-4=0,
设A(x1,y1)、B(x2,y2),
由根与系数的关系可得y1+y2=$\frac{4}{k}$,y1y2=-4.
丨AB丨=$\sqrt{1+\frac{1}{{k}^{2}}}$•$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\frac{4(1+{k}^{2})}{{k}^{2}}$
O到直线AB的距离d=$\frac{丨k丨}{\sqrt{1+{k}^{2}}}$,
则△OAB的面积S=$\frac{1}{2}$丨AB丨•d=$\frac{1}{2}$×$\frac{4(1+{k}^{2})}{{k}^{2}}$×$\frac{丨k丨}{\sqrt{1+{k}^{2}}}$=2$\sqrt{2}$,
解得:k=1,
∴丨AB丨=$\frac{4(1+{k}^{2})}{{k}^{2}}$=8,
故选B.
点评 本题考查直线与抛物线的位置关系,考查韦达定理,弦长公式及点到直线距离公式的应用,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 4个 | B. | 3个 | C. | 2个 | D. | 1个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 6 | C. | $2\sqrt{2}$ | D. | $4\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com