精英家教网 > 高中数学 > 题目详情
17.设函数f(n)=$\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{3n+1}$,其中n∈N*,若有f(n)>$\frac{a}{24}$都成立.
(1)求正整数a的最大值a0
(2)证明不等式f(n)>$\frac{a_0}{24}$(其中n∈N*).

分析 (1)由题意可得f(1)取得最小值,即有f(1)>$\frac{a}{24}$,解不等式可得正整数a的最小值;
(2)运用数学归纳法证明:$\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{3n+1}$>$\frac{25}{24}$.注意验证n=1,不等式成立;证明n=k+1,不等式也成立,注意运用假设和不等式的性质.

解答 解:(1)函数f(n)=$\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{3n+1}$,其中n∈N*,若有f(n)>$\frac{a}{24}$都成立,
当n=1时,$\frac{1}{1+1}$+$\frac{1}{1+2}$+$\frac{1}{3+1}$>$\frac{a}{24}$,即$\frac{26}{24}$>$\frac{a}{24}$,
即有a<26,正整数a的最大值a0=25;
(2)下面运用数学归纳法证明:$\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{3n+1}$>$\frac{25}{24}$.
①当n=1时,$\frac{1}{1+1}$+$\frac{1}{1+2}$+$\frac{1}{3+1}$>$\frac{25}{24}$成立;
②假设当n=k时,不等式成立,即$\frac{1}{k+1}$+$\frac{1}{k+2}$+…+$\frac{1}{3k+1}$>$\frac{25}{24}$,
则当n=k+1时,$\frac{1}{(k+1)+1}$+$\frac{1}{(k+1)+2}$+…+$\frac{1}{3(k+1)+1}$
=$\frac{1}{k+1}$+$\frac{1}{k+2}$+…+$\frac{1}{3k+1}$+$\frac{1}{3k+2}$+$\frac{1}{3k+3}$+$\frac{1}{3k+4}$-$\frac{1}{k+1}$
>$\frac{25}{24}$+$\frac{1}{3k+2}$+$\frac{1}{3k+4}$-$\frac{2}{3}$•$\frac{1}{k+1}$,
由$\frac{1}{3k+2}$+$\frac{1}{3k+4}$=$\frac{6(k+1)}{9{k}^{2}+18k+8}$>$\frac{2}{3(k+1)}$,
可得$\frac{1}{3k+2}$+$\frac{1}{3k+4}$-$\frac{2}{3}$•$\frac{1}{k+1}$>0,
所以当n=k+1时,不等式也成立.
由①②可得,对一切的正整数n,$\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{3n+1}$>$\frac{25}{24}$.
即:对一切的正整数n,f(n)>$\frac{a_0}{24}$.

点评 本题考查数列不等式成立及证明,注意运用恒成立思想和数学归纳法,考查推理和运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.定义在R上的函数f(x),满足(x-1)f′(x)≤0,且y=f(x+1)为偶函数,当|x1-1|<|x2-1|时,有(  )
A.f(x1)≥f(x2B.f(x1)=f(x2C.f(x1)>f(x2D.f(x1)≤f(x2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.△ABC的顶点C(x0,y0)的坐标满足不等式x2+y2≤8+2y,y≥3,边AB在x轴上,已知点Q(0,1)与直线AC及BC的距离均为1,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.对数列{an},{bn},若区间[an,bn]满足下列条件:
①$[{{a_{n+1}},{b_{n+1}}}]?[{{a_n},{b_n}}]({n∈{N^*}})$;
②$\lim_{n→+∞}({{b_n}-{a_n}})=0$;则[an,bn]为区间套,
下列可以构成区间套的数列是(  )
A.${a_n}={({\frac{1}{2}})^n},{b_n}={({\frac{2}{3}})^n}$B.${a_n}={({\frac{1}{3}})^n},{b_n}=\frac{n}{{{n^2}+1}}$
C.${a_n}=\frac{n-1}{n},{b_n}=1+{({\frac{1}{3}})^n}$D.${a_n}=\frac{n+3}{n+2},{b_n}=\frac{n+2}{n+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知等比数列的前n项和为A,前2n项和为B,公比为q,则$\frac{B-A}{A}$的值为(  )
A.qB.q2C.qn-1D.qn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.函数f(x)=ax-(k-1)a-x(a>0且a≠1)是定义域为R的奇函数.
(1)求k的值;
(2)若f(1)<0,试分析判断y=f(x)的单调性(不需证明),并求使不等式f(x2+tx)+f(4-x)<0恒成立的t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设F为抛物线C:y2=4x的焦点,过点F作直线且交C于A,B两点,O是坐标原点,△OAB的面积为2$\sqrt{2}$,则|AB|=(  )
A.6B.8C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设命题p:方程5x2+my2=1表示焦点在x轴上的椭圆;命题q:方程(m+1)x2-my2=1表示焦点在x轴上的双曲线,若p∧q为假,p∨q为真,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若正三棱锥的侧面都是直角三角形,则它的侧棱与底面所成角的余弦值为(  )
A.$\frac{\sqrt{6}}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{2}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

同步练习册答案