精英家教网 > 高中数学 > 题目详情
1.定义在R上的函数f(x),满足(x-1)f′(x)≤0,且y=f(x+1)为偶函数,当|x1-1|<|x2-1|时,有(  )
A.f(x1)≥f(x2B.f(x1)=f(x2C.f(x1)>f(x2D.f(x1)≤f(x2

分析 由y=f(x+1)为偶函数,可得y=f(x)关于x=1对称.分三种情况进行讨论:①当x1≥1,x2≥1时,则由|x1-1|<|x2-1|可得f(x1)>f(x2);②当x1<1,x2<1时,同理可得f(x1)>f(x2);③当x1<1,x2≥1时,同理得f(x1)>f(x2);综上得到答案.

解答 解:因为函数y=f(x+1)为偶函数,所以y=f(x+1)=f(-x+1),
即函数y=f(x)关于x=1对称,所以f(2-x1)=f(x1),f(2-x2)=f(x2).
当x>1时,f'(x)≤0,此时函数y=f(x)单调递减,当x<1时,f'(x)≥0,此时函数y=f(x)单调递增.
①若x1≥1,x2≥1,则由|x1-1|<|x2-1|,得x1-1<x2-1,即1≤x1<x2,所以f(x1)>f(x2).
②同理若x1<1,x2<1,由|x1-1|<|x2-1|,得-(x1-1)<-(x2-1),即x2<x1<1,所以f(x1)>f(x2).
③若x1,x2中一个大于1,一个小于1,不妨设x1<1,x2≥1,则-(x1-1)<x2-1,
可得1<2-x1<x2,所以f(2-x1)>f(x2),即f(x1)>f(x2).
综上有f(x1)>f(x2).
故选C.

点评 本题主要考查函数的导数与函数的单调性的关系,体现了分类讨论的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.在区间[0,π]上随机地取一个数x,则事件“-1≤tanx≤$\sqrt{3}$”发生的概率为(  )
A.$\frac{7}{12}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.将函数$y=cos(2x+\frac{π}{6})$图象上的点$P(\frac{π}{4},t)$向右平移m(m>0)个单位长度得到点P',若P'位于函数y=cos2x的图象上,则(  )
A.$t=-\frac{{\sqrt{3}}}{2}$,m的最小值为$\frac{π}{6}$B.$t=-\frac{{\sqrt{3}}}{2}$,m的最小值为$\frac{π}{12}$
C.$t=-\frac{1}{2}$,m的最小值为$\frac{π}{6}$D.$t=-\frac{1}{2}$,m的最小值为$\frac{π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知等差数列{an}的首项为a1,公差为d,其前n项和为Sn,若直线y=a1x+m与在y轴上的截距为1的直线x+2y-d=0垂直,则数列{$\frac{1}{{S}_{n}}$}的前100项的和为$\frac{100}{101}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.过抛物线C:x2=4y的焦点F作直线l交抛物线C于A、B两点,若|AB|=5,则线段AB中点的纵坐标为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=sin2ωx-$\frac{1}{2}$(ω>0)的周期为$\frac{π}{2}$,若将其图象沿x轴向右平移a个单位(a>0),所得图象关于原点对称,则实数a的最小值为(  )
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.$\frac{π}{2}$D.$\frac{π}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知正方体ABCD-A1B1C1D1,点E,F,G分别是线段B1B,AB和A1C上的动点,观察直线CE与D1F,CE与D1G.给出下列结论:
①对于任意给定的点E,存在点F,使得D1F⊥CE;
②对于任意给定的点F,存在点E,使得CE⊥D1F;
③对于任意给定的点E,存在点G,使得D1G⊥CE;
④对于任意给定的点G,存在点E,使得CE⊥D1G.
其中正确结论的个数是(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设函数f(x)=sin(2x+$\frac{π}{4}$)(x∈[0,$\frac{9π}{8}$]),若方程f(x)=a恰好有三个根,分别为x1,x2,x3(x1<x2<x3),则x1+2x2+x3的值为(  )
A.πB.$\frac{3π}{4}$C.$\frac{3π}{2}$D.$\frac{5π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(n)=$\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{3n+1}$,其中n∈N*,若有f(n)>$\frac{a}{24}$都成立.
(1)求正整数a的最大值a0
(2)证明不等式f(n)>$\frac{a_0}{24}$(其中n∈N*).

查看答案和解析>>

同步练习册答案