精英家教网 > 高中数学 > 题目详情
10.设函数f(x)=sin(2x+$\frac{π}{4}$)(x∈[0,$\frac{9π}{8}$]),若方程f(x)=a恰好有三个根,分别为x1,x2,x3(x1<x2<x3),则x1+2x2+x3的值为(  )
A.πB.$\frac{3π}{4}$C.$\frac{3π}{2}$D.$\frac{5π}{4}$

分析 由x∈[0,$\frac{9π}{8}$]求出2x+$\frac{π}{4}$的范围,由正弦函数的图象画出函数的大致图象,由函数的图象,以及正弦图象的对称轴求出x1+x2、x2+x3的值,即可求出x1+2x2+x3的值.

解答 解:由题意x∈[0,$\frac{9π}{8}$],则2x+$\frac{π}{4}$∈[$\frac{π}{4}$,$\frac{5π}{2}$],
画出函数的大致图象:
由图得,当$\frac{\sqrt{2}}{2}≤a<1$ 时,方程f(x)=a恰好有三个根,
由2x+$\frac{π}{4}$=$\frac{π}{2}$得x=$\frac{π}{8}$,由2x+$\frac{π}{4}$=$\frac{3π}{2}$得x=$\frac{5π}{8}$,
由图知,点(x1,0)与点(x2,0)关于直线$x=\frac{π}{8}$对称,
点(x2,0)与点(x3,0)关于直线$x=\frac{5π}{8}$对称,
∴x1+x2=$\frac{π}{4}$,x2+x3=$\frac{5π}{4}$,
即x1+2x2+x3=$\frac{π}{4}$+$\frac{5π}{4}$=$\frac{3π}{2}$,
故选C.

点评 本题考查正弦函数的图象,以及正弦函数图象对称性的应用,考查整体思想,数形结合思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知f(x)=|ax-1|(a∈R),不等式f(x)≤2的解集是{x|-$\frac{1}{2}$≤x≤$\frac{3}{2}$}.
(1)求a的值;
(2)解不等式f(x)+f($\frac{x}{2}$-1)≥5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.定义在R上的函数f(x),满足(x-1)f′(x)≤0,且y=f(x+1)为偶函数,当|x1-1|<|x2-1|时,有(  )
A.f(x1)≥f(x2B.f(x1)=f(x2C.f(x1)>f(x2D.f(x1)≤f(x2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(m,-4),若|$\overrightarrow{a}$||$\overrightarrow{b}$|+$\overrightarrow{a}$•$\overrightarrow{b}$=0,则实数m等于(  )
A.-4B.4C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={x|x(x-2)=0},B={x∈Z|x2≤1},则A∪B等于(  )
A.{-2,-1,0,1}B.{-1,0,1,2}C.[-2,2]D.{0,2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=x2-27有极小值为-27.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.△ABC的顶点C(x0,y0)的坐标满足不等式x2+y2≤8+2y,y≥3,边AB在x轴上,已知点Q(0,1)与直线AC及BC的距离均为1,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.对数列{an},{bn},若区间[an,bn]满足下列条件:
①$[{{a_{n+1}},{b_{n+1}}}]?[{{a_n},{b_n}}]({n∈{N^*}})$;
②$\lim_{n→+∞}({{b_n}-{a_n}})=0$;则[an,bn]为区间套,
下列可以构成区间套的数列是(  )
A.${a_n}={({\frac{1}{2}})^n},{b_n}={({\frac{2}{3}})^n}$B.${a_n}={({\frac{1}{3}})^n},{b_n}=\frac{n}{{{n^2}+1}}$
C.${a_n}=\frac{n-1}{n},{b_n}=1+{({\frac{1}{3}})^n}$D.${a_n}=\frac{n+3}{n+2},{b_n}=\frac{n+2}{n+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设命题p:方程5x2+my2=1表示焦点在x轴上的椭圆;命题q:方程(m+1)x2-my2=1表示焦点在x轴上的双曲线,若p∧q为假,p∨q为真,求实数m的取值范围.

查看答案和解析>>

同步练习册答案