| A. | ${a_n}={({\frac{1}{2}})^n},{b_n}={({\frac{2}{3}})^n}$ | B. | ${a_n}={({\frac{1}{3}})^n},{b_n}=\frac{n}{{{n^2}+1}}$ | ||
| C. | ${a_n}=\frac{n-1}{n},{b_n}=1+{({\frac{1}{3}})^n}$ | D. | ${a_n}=\frac{n+3}{n+2},{b_n}=\frac{n+2}{n+1}$ |
分析 直接利用已知条件,判断选项是否满足两个条件即可.
解答 解:由题意,对于A,${a_n}={({\frac{1}{2}})^n},{b_n}={({\frac{2}{3}})^n}$,an+1<an,∴[an+1,bn+1]?[an,bn](n∈N*)不成立,所以A不正确;
对于B,an+1<an,∴[an+1,bn+1]?[an,bn](n∈N*)不成立,所以B不正确;
对于C,∵an+1>an,bn>bn+1,∴[an+1,bn+1]?[an,bn](n∈N*)成立,并且$\lim_{n→+∞}({{b_n}-{a_n}})=0$,所以C正确;
对于D,∵an+1<an,bn>bn+1,∴[an+1,bn+1]?[an,bn](n∈N*)不成立,所以D不正确;
故选:C.
点评 本题考查数列的极限,数列的单调性的应用,考查分析问题解决问题的能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | π | B. | $\frac{3π}{4}$ | C. | $\frac{3π}{2}$ | D. | $\frac{5π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,4) | B. | (-4,4] | C. | (-∞,-4)∪[2,+∞) | D. | [-4,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | -1 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com