精英家教网 > 高中数学 > 题目详情
10.若函数y=ax在区间[0,3]上的最大值和最小值的和为$\frac{9}{8}$,则函数y=logax在区间$[{\frac{1}{4},2}]$上的最小值是(  )
A.-2B.-1C.1D.2

分析 先根据指数函数的单调性求出a的值,再根据对数函数的性质即可求出答案.

解答 解:∵函数y=ax在区间[0,3]上的最大值和最小值的和为$\frac{9}{8}$,
∴1+a3=$\frac{9}{8}$,
解得a=$\frac{1}{2}$,a=-$\frac{1}{2}$(舍去),
∴y=log$\frac{1}{2}$x在区间[$\frac{1}{4}$,2]上为减函数,
∴ymin=log$\frac{1}{2}$2=-1,
故选:B

点评 本题考查了指数函数和对数函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.2017年1月1日,作为贵阳市打造“千园之城”27个示范性公元之一的泉湖公园正式开园,元旦期间,为了活跃气氛,主办方设置了水上挑战项目向全体市民开放,现从到公园游览的市民中随机抽取了60名男生和40名女生共100人进行调查,统计出100名市民中愿意接受挑战和不愿意接受挑战的男女生比例情况,具体数据如图表:
(1)根据条件完成下列2×2列联表,并判断是否在犯错误的概率不超过1%的情况下愿意接受挑战与性别有关?
  愿意 不愿意 总计
 男生   
 女生   
 总计   
(2)现用分层抽样的方法从愿意接受挑战的市民中选取7名挑战者,再从中抽取2人参加挑战,求抽取的2人中至少有一名男生的概率.
参考公式与数据:
 P(K2≥k0 0.1 0.05 0.025 0.01
 k0 2.7063.841 5.024 6.635 
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=x2-27有极小值为-27.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列结论不正确的是(  )
A.若ab>bc,则a>cB.若a3>b3,则a>b
C.若a>b,c<0,则ac<bcD.若$\sqrt{a}$<$\sqrt{b}$,则a>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.对数列{an},{bn},若区间[an,bn]满足下列条件:
①$[{{a_{n+1}},{b_{n+1}}}]?[{{a_n},{b_n}}]({n∈{N^*}})$;
②$\lim_{n→+∞}({{b_n}-{a_n}})=0$;则[an,bn]为区间套,
下列可以构成区间套的数列是(  )
A.${a_n}={({\frac{1}{2}})^n},{b_n}={({\frac{2}{3}})^n}$B.${a_n}={({\frac{1}{3}})^n},{b_n}=\frac{n}{{{n^2}+1}}$
C.${a_n}=\frac{n-1}{n},{b_n}=1+{({\frac{1}{3}})^n}$D.${a_n}=\frac{n+3}{n+2},{b_n}=\frac{n+2}{n+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.△ABC的内角A,B,C所对的边分别是a,b,c,向量$\overrightarrow m=({b,-\sqrt{3}a})$与$\overrightarrow n=({cosA,sinB})$垂直.
(1)求A;
(2)若B+$\frac{π}{12}$=A,a=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.函数f(x)=ax-(k-1)a-x(a>0且a≠1)是定义域为R的奇函数.
(1)求k的值;
(2)若f(1)<0,试分析判断y=f(x)的单调性(不需证明),并求使不等式f(x2+tx)+f(4-x)<0恒成立的t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.一个命题与它的逆命题、否命题、逆否命题这四个命题中,真命题的个数(  )
A.一定是奇数B.一定是偶数
C.可能是奇数也可能是偶数D.上述判断都不正确

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知$\overrightarrow a=({1,-2})和\overrightarrow b=({-m,6})$共线,则圆锥曲线$\frac{{x}^{2}}{m}$+y2=1的离心率为(  )
A.$\frac{{\sqrt{6}}}{3}$B.2C.$\frac{2}{3}$D.$\frac{{\sqrt{6}}}{3}$或2

查看答案和解析>>

同步练习册答案