精英家教网 > 高中数学 > 题目详情
11.在区间[0,π]上随机地取一个数x,则事件“-1≤tanx≤$\sqrt{3}$”发生的概率为(  )
A.$\frac{7}{12}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{1}{4}$

分析 根据几何概型的概率公式进行求解即可.

解答 解:∵0≤x≤π,-1≤tanx≤$\sqrt{3}$
∴0≤x≤$\frac{π}{3}$或$\frac{3π}{4}≤x≤π$,
则事件“-1≤tanx≤$\sqrt{3}$”发生的概率P=$\frac{\frac{π}{3}+\frac{π}{4}}{π}$=$\frac{7}{12}$,
故选:A.

点评 本题主要考查几何概型的概率的计算,根据三角函数的性质进行求解以及几何概型的概率公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知f(x)=|2x-1|+x+$\frac{1}{2}$的最小值为m.
(1)求m的值;
(2)已知a,b,c是正实数,且a+b+c=m,求证:2(a3+b3+c3)≥ab+bc+ca-3abc.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.$\frac{{2cos{{10}°}-sin{{20}°}}}{{cos{{20}°}}}$=(  )
A.$\frac{1}{2}$B.1C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在区间[0,π]上随机取一个数x,使sinx≥$\frac{\sqrt{3}}{2}$成立的概率$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知三角形ABC中,B(-1,0),C(1,0),且|AB|+|AC|=4.
(Ⅰ)求动点A的轨迹M的方程;
(Ⅱ)P为轨迹M上动点,△PBC的内切圆面积为S1,外接圆面积为S2,当P在M上运动时,求$\frac{S_2}{S_1}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知向量$\vec a=({3,-2})$,$\vec b=({4,6})$,若向量$2\vec a+\vec b$与向量$\vec b$的夹角为θ,则cosθ=(  )
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知实数x,y满足$\left\{\begin{array}{l}{x+y-1≤0}\\{x-y≤0}\\{x≥0}\end{array}\right.$,则2x-y的最大值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知f(x)=|ax-1|(a∈R),不等式f(x)≤2的解集是{x|-$\frac{1}{2}$≤x≤$\frac{3}{2}$}.
(1)求a的值;
(2)解不等式f(x)+f($\frac{x}{2}$-1)≥5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.定义在R上的函数f(x),满足(x-1)f′(x)≤0,且y=f(x+1)为偶函数,当|x1-1|<|x2-1|时,有(  )
A.f(x1)≥f(x2B.f(x1)=f(x2C.f(x1)>f(x2D.f(x1)≤f(x2

查看答案和解析>>

同步练习册答案