【题目】定义方程f(x)=f′(x)的实数根x0叫做函数f(x)的“异驻点”.若函数g(x)=2016x,h(x)=ln(x+1),φ(x)=x3﹣1的“异驻点”分别为α,β,γ,则α,β,γ的大小关系为( )
A.α>β>γ
B.β>α>γ
C.β>γ>α
D.γ>α>β
【答案】D
【解析】解:①∵g(x)=2016x,∴g′(x)=2016,由g(x)=g′(x),解得2016x=2016,∴α=1.
②∵h(x)=ln(x+1),
∴h′(x)= ,由h(x)=h′(x),得到ln(x+1)= ,
令h(x)=ln(x+1)﹣ ,则h′(x)= + ,因此函数h(x)在(﹣1,+∞)单调递增.
∵h(0)=﹣1<0,h(1)=ln2﹣ >0,∴0<β<1.
③∵φ(x)=x3﹣1,∴φ′(x)=3x2 , 由φ(x)=φ′(x),得x3﹣1=2x2 ,
∵2x2>0,(x=0时不成立),∴x3﹣1>0,∴x>1,∴γ>1.
综上可知:γ>α>β.
故选:D.
【考点精析】关于本题考查的基本求导法则,需要了解若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】某车间20名工人年龄数据如下表:
年龄(岁) | 19 | 24 | 26 | 30 | 34 | 35 | 40 | 合计 |
工人数(人) | 1 | 3 | 3 | 5 | 4 | 3 | 1 | 20 |
(1)求这20名工人年龄的众数与平均数;
(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;
(3)从年龄在24和26的工人中随机抽取2人,求这2人均是24岁的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)= .
(1)判断函数f(x)的奇偶性并证明;
(2)证明f(x)是定义域内的增函数;
(3)解不等式f(1﹣m)+f(1﹣m2)>0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设S,T是R的两个非空子集,如果存在一个从S到T的函数y=f(x)满足:(i)T={f(x)|x∈S};(ii)对任意x1 , x2∈S,当x1<x2时,恒有f(x1)<f(x2),那么称这两个集合“保序同构”,以下集合对不是“保序同构”的是( )
A.A=N* , B=N
B.A={x|﹣1≤x≤3},B={x|x=﹣8或0<x≤10}
C.A={x|0<x<1},B=R
D.A=Z,B=Q
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】第二十九届夏季奥林匹克运动会将于2008年8月8日在北京举行,若集合A={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员}.集合C={参加北京奥运会比赛的女运动员},则下列关系正确的是( )
A.AB
B.BC
C.A∩B=C
D.B∪C=A
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛掷一枚质地均匀的硬币,正面朝上的概率为.现采用随机模拟试验的方法估计抛掷这枚硬币三次恰有两次正面朝上的概率:先由计算器产生0或1的随机数,用0表示正面朝上,用1表示反面朝上;再以每三个随机数做为一组,代表这三次投掷的结果.经随机模拟试验产生了如下20组随机数:
101 111 010 101 010 100 100 011 111 110
000 011 010 001 111 011 100 000 101 101
据此估计,抛掷这枚硬币三次恰有两次正面朝上的概率为( ).
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学从区间[﹣1,1]随机抽取2n个数x1 , x2 , …,xn , y1 , y2 , …,yn , 构成n个数对(x1 , y1),(x2 , y2),…(xn , yn),该同学用随机模拟的方法估计n个数对中两数的平方和小于1(即落在以原点为圆心,1为半径的圆内)的个数,则满足上述条件的数对约有个.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com