精英家教网 > 高中数学 > 题目详情
已知F1、F2是椭圆=1的两焦点,经点F2的直线交椭圆于点A、B,若|AB|=5,则|AF1|+|BF1|等于(  )
A.16       B.11       C.8       D.3
B
∵直线交椭圆于点A、B,
∴由椭圆的定义可知:|AF1|+|BF1|+|AB|=4a,
∴|AF1|+|BF1|=16﹣5=11,
故选B
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(12分)(2011•重庆)如图,椭圆的中心为原点0,离心率e=,一条准线的方程是x=2

(Ⅰ)求椭圆的标准方程;
(Ⅱ)设动点P满足:=+2,其中M、N是椭圆上的点,直线OM与ON的斜率之积为﹣
问:是否存在定点F,使得|PF|与点P到直线l:x=2的距离之比为定值;若存在,求F的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的两个焦点分别为,且点在椭圆C上,又.
(1)求焦点F2的轨迹的方程;
(2)若直线与曲线交于M、N两点,以MN为直径的圆经过原点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:的离心率为,短轴一个端点到右焦点的距离为
(1)求椭圆C的方程;
(2)设直线与椭圆C交于A、B两点,以弦为直径的圆过坐标原点,试探讨点到直线的距离是否为定值?若是,求出这个定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的焦点为,点是椭圆上的一点,轴的交点恰为的中点, .
(1)求椭圆的方程;
(2)若点为椭圆的右顶点,过焦点的直线与椭圆交于不同的两点,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知圆E:,点,P是圆E上任意一点.线段PF的垂直平分线和半径PE相交于Q.
(1)求动点Q的轨迹的方程;
(2)已知A,B,C是轨迹的三个动点,A与B关于原点对称,且,问△ABC的面积是否存在最小值?若存在,求出此时点C的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设F1,F2分别是椭圆的左,右焦点,过F1的直线L与椭圆相交于A,B两点,|AB|=,直线L的斜率为1,则b的值为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆的右焦点作相互垂直的两条弦,若 的最小值为,则椭圆的离心率(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是椭圆上的点,则的取值范围是               

查看答案和解析>>

同步练习册答案