精英家教网 > 高中数学 > 题目详情
已知椭圆C:的离心率为,短轴一个端点到右焦点的距离为
(1)求椭圆C的方程;
(2)设直线与椭圆C交于A、B两点,以弦为直径的圆过坐标原点,试探讨点到直线的距离是否为定值?若是,求出这个定值;若不是,说明理由.
(1);(2)是定值,定值为

试题分析:(1)利用椭圆的离心率为 ,短轴一个端点到右焦点的距离为,建立方程组,即可求椭圆C的方程;(2)分类讨论,①当轴时,得②当轴不垂直时,设直线的方程为.联立,得,利用韦达定理,及以AB弦为直径的圆过坐标原点O,则有,得,再利用点到直线的距离公式,即可求得结论.
解:(1)设椭圆的半焦距为,依题意   ,  
所求椭圆方程为
(2)设
①当轴时,设方程为:,此时两点关于轴对称,
又以为直径的圆过原点,设代人椭圆方程得:
②当轴不垂直时,
设直线的方程为.联立
整理得


由以为直径的圆过原点,则有。 即: 故满足:   得:  
所以=。又点到直线的距离为:
综上所述:点到直线的距离为定值
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:( )的离心率为,点(1,)在椭圆C上.
(1)求椭圆C的方程;
(2)若椭圆C的两条切线交于点M(4,),其中,切点分别是A、B,试利用结论:在椭圆上的点()处的椭圆切线方程是,证明直线AB恒过椭圆的右焦点
(3)试探究的值是否恒为常数,若是,求出此常数;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆经过点,离心率,直线与椭圆交于两点,向量,且
(1)求椭圆的方程;
(2)当直线过椭圆的焦点为半焦距)时,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆C: 左右焦,若椭圆C上恰有4个不同的点P,使得为等腰三角形,则C的离心率的取值范围是 _______

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆+=1(a>b>0)的离心率为,则双曲线-=1的渐近线方程为(  )
A.y=±x     B.y=±2x
C.y=±4x      D.y=±x

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆过点,且离心率.
(1)求椭圆C的方程;
(2)已知过点的直线与该椭圆相交于A、B两点,试问:在直线上是否存在点P,使得是正三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xoy中,已知椭圆C1的左焦点为F1(-1,0),且点P(0,1)在C1上。
(1)求椭圆C1的方程;
(2)设直线l同时与椭圆C1和抛物线C2相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1、F2是椭圆=1的两焦点,经点F2的直线交椭圆于点A、B,若|AB|=5,则|AF1|+|BF1|等于(  )
A.16       B.11       C.8       D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的左焦点为,直线与椭圆相交于点,当△FAB的周长最大时,的面积是____________.

查看答案和解析>>

同步练习册答案