精英家教网 > 高中数学 > 题目详情

【题目】已知定义在上的函数同时满足:①对任意,都有;②当时,

(1)当时,求的表达式;

(2)若关于的方程上有实数解,求实数的取值范围;

(3)若对任意,关于的不等式都成立,求实数的取值范围.

【答案】(1);(2;(3

【解析】

(1)由①求函数周期T=2,然后由函数周期性和递推关系式求出的函数解析式;

(2)设方程的实数解为,利用(1)的结论解方程和不等式即可求出参数的取值范围;

(3)先求函数的最小值,再由函数的周期性可得在上恒有,然后求得在的最大值为最后由即可得出答案.

(1)∵对任意,都有,∴

则可得函数的周期为T=2

时,,∴当时,

时,

时,

(2)设关于的方程上的实数解为

,∴

(3)由(1)得可得在,又因函数的周期为T=2,则可得上恒有

令函数得在上单调递增,则可得

由题意对任意,关于的不等式都成立,

则可得恒有:解得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求的极值;

(2)是否存在实数,使得的单调区间相同,若存在,求出的值,若不存在,请说明理由;

(3)若,求证:上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角梯形PBCD中, APD的中点,如下左图。将沿AB折到的位置,使,点ESD上,且,如下图。

1)求证: 平面ABCD

2)求二面角E—AC—D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某科研团队对某一生物生长规律进行研究,发现其生长蔓延的速度越来越快.开始在某水域投放一定面积的该生物,经过2个月其覆盖面积为18平方米,经过3个月其覆盖面积达到27平方米.该生物覆盖面积(单位:平方米)与经过时间个月的关系有两个函数模型可供选择.

1)试判断哪个函数模型更合适,并求出该模型的函数解析式;

2)问约经过几个月,该水域中此生物的面积是当初投放的1000(参考数据:)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在边长为2的正方形中,分别为的中点,的中点,沿将正方形折起,使重合于点,在构成的四面体中,下列结论中错误的是( )

A. 平面

B. 直线与平面所成角的正切值为

C. 异面直线和求所成角为

D. 四面体的外接球表面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆与直线相切于点,圆心轴上.

(1)求圆的方程;

(2)过点且不与轴重合的直线与圆相交于两点,为坐标原点,直线分别与直线相交于两点,记的面积分别是,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年2月13日《烟台市全民阅读促进条例》全文发布,旨在保障全民阅读权利,培养全民阅读习惯,提高全民阅读能力,推动文明城市和文化强市建设.某高校为了解条例发布以来全校学生的阅读情况,随机调查了200名学生每周阅读时间(单位:小时)并绘制如图所示的频率分布直方图.

(1)求这200名学生每周阅读时间的样本平均数和样本方差(同一组中的数据用该组区间的中间值代表);

(2)由直方图可以认为,目前该校学生每周的阅读时间服从正态分布,其中近似为样本平均数近似为样本方差

(i)一般正态分布的概率都可以转化为标准正态分布的概率进行计算:若,令,则,且.利用直方图得到的正态分布,求

(ii)从该高校的学生中随机抽取20名,记表示这20名学生中每周阅读时间超过10小时的人数,求(结果精确到0.0001)以及的数学期望.

参考数据:.若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数,当时,,则不等式的解集为(

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了解所经销商品的使用情况,随机问卷50名使用者,然后根据这50名的问卷评分数据,统计得到如图所示的频率布直方图,其统计数据分组区间为[4050),[5060),[6070),[7080),[8090),[90100]

1)求频率分布直方图中a的值并估计这50名使用者问卷评分数据的中位数;

2)从评分在[4060)的问卷者中,随机抽取2人,求此2人评分都在[5060)的概率.

查看答案和解析>>

同步练习册答案