精英家教网 > 高中数学 > 题目详情
(12分)(理)如图9-6-6,矩形ABCD中,AB=1,BC=a,PA⊥平面ABCD
(1)问BC边上是否存在Q点,使,说明理由.
(2)问当Q点惟一,且cos<>=时,求点P的位置.
解:(1)如答图9-6-2所示,建立空间直角坐标系A一xyz,设P(0,0,z),
D(0,a,0),Q(1,y,0),

=(1,y,-z),=(-1,a-y,0),且
·-1+y(a-y)=0y2-ay+1=0.
∴△=a2-4.
当a>2时,△>0,存在两个符合条件的Q点;
当a=2时,△=0,存在惟一一个符合条件的Q点;
当a<2时,△<0,不存在符合条件的Q点.
(2)当Q点惟一时,由5题知,a=2,y=1.
∴B(1,0,0),=(-1,0,z),=(-1,1,0).
∴cos<>===
∴z=2.即P在距A点2个单位处.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知直线l∥平面αPα,那么过点P且平行于直线l的直线
A.只有一条,不在平面αB.有无数条,不一定在平面α
C.只有一条,且在平面αD.有无数条,一定在平面α

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图,在直三棱柱ABC-A1B1C1中,点D、E分别在边BC、
B1C1上,CD=B1E=AC,ÐACD=60°.
求证:(1)BE∥平面AC1D;
(2)平面ADC1⊥平面BCC1B1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)在四棱锥P—ABCD中,底面ABCD是a的正方形,PA⊥平面ABCD,且PA=2AB
(Ⅰ)求证:平面PAC⊥平面PBD;
(Ⅱ)求二面角B—PC—D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在半径为的球内有一内接正三棱锥,它的底面三个顶点恰好都在同一个大圆
上,一个动点从三棱锥的一个顶点出发沿球面运动,经过其余三点后返回,则经过的最短路
程是        (   )
A.            B.            C.               D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图的几何体中,平面平面,△为等边三角形的中点.
(1)求证:平面
(2)求证:平面平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在空间四边形中,分别是的中点,
 和所成的角是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在棱长为的正方体中,为线段上的点,且满足
.
(Ⅰ)当时,求证:平面平面
(Ⅱ)试证无论为何值,三棱锥的体积
恒为定值;
(Ⅲ)求异面直线所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,四边形ABCD是矩形,P∉平面ABCD,过BC作平面BCFE交AP于E,交DP于F.求证:四边形BCFE是梯形.

查看答案和解析>>

同步练习册答案