精英家教网 > 高中数学 > 题目详情

[2014·河北教学质量监测]已知数列{an}满足:a1=1,an+1 (n∈N*).若bn+1=(n-λ)(+1)(n∈N*),b1=-λ,且数列{bn}是单调递增数列,则实数λ的取值范围为(  )

A.λ>2 B.λ>3 C.λ<2 D.λ<3

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

已知数列的前项和,则                     

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列中,,对总有成立,
(1)计算的值;
(2)根据(1)的结果猜想数列的通项,并用数学归纳法证明

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{}满足+=2n+1 (
(1)求出的值;
(2)由(1)猜想出数列{}的通项公式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等比数列满足:,公比,数列的前项和为,且.
(1)求数列和数列的通项
(2)设,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足,数列的前项和为.
(1)求数列的通项公式;
(2)求证:
(3)求证:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的通项公式分别为.将中的公共项按照从小到大的顺序排列构成一个新数列记为.
(1)试写出的值,并由此归纳数列的通项公式; 
(2)证明你在(1)所猜想的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,用表示时的函数值中整数值的个数.
(1)求的表达式.
(2)设,求.
(3)设,若,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若无穷数列满足:①对任意;②存在常数,对任意,则称数列为“数列”.
(Ⅰ)若数列的通项为,证明:数列为“数列”;
(Ⅱ)若数列的各项均为正整数,且数列为“数列”,证明:对任意
(Ⅲ)若数列的各项均为正整数,且数列为“数列”,证明:存在,数列为等差数列.

查看答案和解析>>

同步练习册答案