精英家教网 > 高中数学 > 题目详情

已知数列中,,对总有成立,
(1)计算的值;
(2)根据(1)的结果猜想数列的通项,并用数学归纳法证明

(1),(2).

解析试题分析:(1)逐一代入求解:当时,,当时,,当时,,(2)根据,猜想.用数学归纳法证明时,步骤要完整,关键步骤不跳步. .当时,显然成立;.假设当时成立,即,则当时,,所以,当时也成立,综合.可知,对任意,总有成立.
试题解析:(1)当时,;    2分
时,;    4分
时,;    6分
(2)结论:  8分
证明:.当时,显然成立;  9分
.假设当时成立,即
则当时,
所以,当时也成立,    13分
综合.可知,对任意,总有成立。   14分
考点:归纳猜想证明

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

五位同学围成一圈依次循环报数,规定,第一位同学首次报出的数为1,第二位同学首次报出的数为2,之后每位同学所报出的数都是前两位同学所报出数的乘积的个位数字,则第2013个被报出的数为      

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设数列{an}满足,(n∈N﹡),且,则数列{an}的通项公式为       .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

),)是函数的图象上的任意两点.
(1)当时,求+的值;
(2)设,其中,求
(3)对应(2)中,已知,其中,设为数列的前项和,求证.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前n项和为,,且(),数列满足,,对任意,都有
(1)求数列的通项公式;
(2)令.
①求证:
②若对任意的,不等式恒成立,试求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}的通项公式为an=n2-n-30.
(1)求数列的前三项,60是此数列的第几项?
(2)n为何值时,an=0,an>0,an<0?
(3)该数列前n项和Sn是否存在最值?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分18分)本题共3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.
已知数列满足.
(1)若,求的取值范围;
(2)若是等比数列,且,正整数的最小值,以及取最小值时相应的仅比;
(3)若成等差数列,求数列的公差的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于数列,把作为新数列的第一项,把)作为新数列的第项,数列称为数列的一个生成数列.例如,数列的一个生成数列是.已知数列为数列的生成数列,为数列的前项和.
(1)写出的所有可能值;
(2)若生成数列满足,求数列的通项公式;
(3)证明:对于给定的的所有可能值组成的集合为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

[2014·河北教学质量监测]已知数列{an}满足:a1=1,an+1 (n∈N*).若bn+1=(n-λ)(+1)(n∈N*),b1=-λ,且数列{bn}是单调递增数列,则实数λ的取值范围为(  )

A.λ>2 B.λ>3 C.λ<2 D.λ<3

查看答案和解析>>

同步练习册答案