精英家教网 > 高中数学 > 题目详情
2.设函数f(x)=|3x-1|+ax+3,a∈R.
(1)若a=1,解不等式f(x)≤4;
(2)若函数f(x)有最小值,求a的取值范围.

分析 (1)a=1时,得出f(x)=|3x-1|+x+3,这样可讨论x,从而去绝对值号即可将f(x)≤4转化为关于x的一元一次不等式,解不等式得出x的范围,求并集即得出原不等式的解集;
(2)去绝对值号便可得出$f(x)=\left\{\begin{array}{l}{(3+a)x+2}&{x≥\frac{1}{3}}\\{(a-3)x+4}&{x<\frac{1}{3}}\end{array}\right.$,这样便可看出,要使得f(x)有最小值,需满足$\left\{\begin{array}{l}{a+3≥0}\\{a-3≤0}\end{array}\right.$,这样便可得出a的取值范围.

解答 解:(1)当a=1时,f(x)=|3x-1|+x+3;
①当$x≥\frac{1}{3}$时,f(x)≤4可化为3x-1+x+3≤4,解得$\frac{1}{3}≤x≤\frac{1}{2}$;
②当$x<\frac{1}{3}$时,f(x)≤4可化为-3x+1+x+3≤4,解得$0≤x<\frac{1}{3}$;
综上可得,原不等式的解集为$[0,\frac{1}{2}]$;
(2)$f(x)=|3x-1|+ax+3=\left\{\begin{array}{l}{(3+a)x+2}&{x≥\frac{1}{3}}\\{(a-3)x+4}&{x<\frac{1}{3}}\end{array}\right.$;
函数f(x)有最小值的充要条件为$\left\{\begin{array}{l}{a+3≥0}\\{a-3≤0}\end{array}\right.$;
即-3≤a≤3;
∴a的取值范围为[-3,3].

点评 考查含绝对值函数的处理方法:去绝对值号,一次函数的单调性,分段函数最小值的求法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.在等差数列{an}中,a1=1,前n项和Sn满足条件$\frac{{{S_{2n}}}}{S_n}$=$\frac{4n+2}{n+1}$,n=1,2,…
(1)求数列{an}的通项公式;
(2)记bn=$a_n(\frac{1}{2})^{a_n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在如图所示的锐角三角形空地中,欲建立一个内接矩形花园(阴影部分),则其边长为x(单位:m),设花园面积为S,
(Ⅰ)将S表示成x的函数,求该函数的解析式及定义域;
(Ⅱ)欲建一个面积最大的内接矩形花园,求其边长x的值;
(Ⅲ)欲建一个面积不小于300m2的内接矩形花园,求其边长x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}{2x+a,x≤1}\\{lo{g}_{2}x,x>1}\end{array}\right.$,若f(f($\frac{1}{2}$))=4,则a=(  )
A.16B.15C.2D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知f(x)=sinx+cosx+2sinxcosx,x∈[0,$\frac{π}{2}$),则f(x)的值域为$[1,\sqrt{2}+1]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若函数f(x)=|x-1|-|x-a|是奇函数而不是偶函数,且f(x)不恒为0,则(a+1)2016的值(  )
A.0B.1C.22016D.32016

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数y=$\frac{m•{3}^{x}-1}{m•{3}^{x}+1}$的定义域为R,则实数m的取值范围是[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.一条光线从A(-$\frac{1}{2}$,0)处射到点B(0,1)后被y轴反射,则反射光线所在直线的方程为(  )
A.2x-y-1=0B.2x+y-1=0C.x-2y-1=0D.x+2y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设x,y满足约束条件$\left\{\begin{array}{l}{3x-y-2≤0}\\{x-y≥0}\\{x≥0,y≥0}\end{array}\right.$,若目标函数z=ax+2by(a>0,b>0)的最大值为1,则$\frac{1}{{a}^{2}}$+$\frac{1}{4{b}^{2}}$的最小值为8.

查看答案和解析>>

同步练习册答案