精英家教网 > 高中数学 > 题目详情
13.在如图所示的锐角三角形空地中,欲建立一个内接矩形花园(阴影部分),则其边长为x(单位:m),设花园面积为S,
(Ⅰ)将S表示成x的函数,求该函数的解析式及定义域;
(Ⅱ)欲建一个面积最大的内接矩形花园,求其边长x的值;
(Ⅲ)欲建一个面积不小于300m2的内接矩形花园,求其边长x的取值范围.

分析 (Ⅰ)根据△ADE∽△ABC可得y与x的关系,然后将y用x表示,根据矩形的面积公式可得函数s(x) 的解析式;
(Ⅱ)先对二次函数进行配方,然后根据二次函数的性质可知开口向下的二次函数在对称轴处取最大值,从而求出所求;
(Ⅲ)欲建一个面积不小于300m2的内接矩形花园,可得不等式,即可求其边长x的取值范围.

解答 解:(Ⅰ)如图∵△ADE∽△ABC,
∴$\frac{DE}{BC}=\frac{AD}{AB}=\frac{AB-BD}{AB}$,
设矩形的另一边长为y,
∴$\frac{x}{40}=\frac{40-y}{40}$,
∴y=40-x(0<x<40),
∴S(x)=x(40-x)=40x-x2,定义域为:(0,40);
(Ⅱ)S(x)=40x-x2=-(x-20)2+400,0<x<40,
∴x=20时,函数S(x)最大值400m2
(Ⅲ)欲建一个面积不小于300m2的内接矩形花园,则40x-x2≥300,
∴(x-10)(x-30)≤0,∴10≤x≤30.

点评 本题主要考查了三角形相似的应用,以及二次函数求最值,同时考查了分析问题的能力和运算求解的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.在等比数列{an}中,a1+a2+a3+a4+a5=27,$\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+\frac{1}{a_4}+\frac{1}{a_5}$=3,则a3=(  )
A.±9B.9C.3D.±3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知数列{an}的前n项和Sn=n2-4n+1,数列{an}的通项公式${a}_{n}=\left\{\begin{array}{l}{-2,n=1}\\{2n-1,n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.关于x的不等式mx2-ax-1>0(m>0)的解集可能是(  )
A.{x|x<-1或x>$\frac{1}{4}$}B.RC.{x|-$\frac{1}{3}$<x<$\frac{3}{2}$}D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个总体中的100个个体的号码分别为0,1,2,…,99,依次将其均分为10个小组,要用系统抽样的方法抽取一个容量为10的样本,规定:如果在第1组(号码为0-9)中随机抽取的号码为m,那么依次错位地得到后面各组的号码,即第k组中抽取的号码的个位数字为m+k-1或m+k-11(如果m+k≥11),若第6组中抽取的号码为52,则m为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)化简$\frac{sin(2π-α)•tan(π-α)•cos(-π+α)}{{sin(5π+α)•sin(\frac{π}{2}+α)}}$
(2)求函数f(x)=2cosx-cos2x的最大值及对应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.“a>1”是“函数f(x)=x2-2ax在x∈(-∞,1)为减函数”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=|3x-1|+ax+3,a∈R.
(1)若a=1,解不等式f(x)≤4;
(2)若函数f(x)有最小值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知正四棱锥V-ABCD中,AC与BD交于点M,VM是棱锥的高,若AC=6cm,VC=5cm.
(1)求正四棱锥V-ABCD的体积;
(2)求直线VD与底面ABCD所成角的正弦值.

查看答案和解析>>

同步练习册答案