精英家教网 > 高中数学 > 题目详情
20.己知函数f(x)=$\frac{{4}^{x}}{{4}^{x}+2}$(x∈R).
(1)求f(x)+f(1-x);
(2)求f($\frac{1}{2015}$)+f($\frac{2}{2015}$)+…+f($\frac{2013}{2015}$)+f($\frac{2014}{2015}$)的值.

分析 (1)直接利用函数的解析式,可证f(x)+f(1-x)=1.
(2)由倒序相加法可得所求为1007对的组合,即1007个1,可得答案.

解答 解:(1)∵函数f(x)=$\frac{{4}^{x}}{{4}^{x}+2}$,
∴f(x)+f(1-x)=$\frac{{4}^{x}}{{4}^{x}+2}$+$\frac{{4}^{1-x}}{{4}^{1-x}+2}$=$\frac{{4}^{x}}{{4}^{x}+2}$+$\frac{{4}^{1-x}•{4}^{x}}{{{4}^{x}•{4}^{1-x}}^{\;}+2•{4}^{x}}$=$\frac{{4}^{x}}{{4}^{x}+2}$+$\frac{2}{{4}^{x}+2}$=1.
f(x)+f(1-x)=1;
(2)由(1)可得S=f($\frac{1}{2015}$)+f($\frac{2}{2015}$)+…+f($\frac{2013}{2015}$)+f($\frac{2014}{2015}$)=1007×1=1007.

点评 本题考查函数与方程的应用,倒序相加法求和,得出f(x)+f(1-x)=1并得出所求即为1007对项的和是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x2f2(1-x),求函数的导函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.0.30.2,30.3,(-0.3)${\;}^{\frac{3}{5}}$,0.20.3,20.5,(-0.3)7从小到大排列为(-0.3)${\;}^{\frac{3}{5}}$<(-0.3)7<0.20.3<0.30.2<30.3<20.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.通过作图,找出与-170°终边相同的最小正角,并写出这些终边相同的角的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某办公室有男职工5人,女职工4人,欲从中抽调3人支援其他工作,但至少要有2位是男士,则抽凋方案有(  )种.
A.18B.30C.40D.50

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,过抛物线y2=x上一点A(4,2)作倾斜角互补的两条直线AB,AC,交抛物线于B,C两点,求证:直线BC的斜率是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某粮食收购站分两个等级收购小麦,一级小麦a元/kg,二级小麦b元/kg(b<a).现有一级小麦m kg,二级小麦n kg,若以两种价格的平均数收购,是否合理?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知log32=a,3b=5,则log3$\sqrt{30}$由a、b表示为(  )
A.$\frac{1}{2}$(a+b+1)B.$\frac{1}{2}$(a+b)+1C.$\frac{1}{3}$(a+b+1)D.$\frac{1}{2}$a+b+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知α,β为锐角三角形的两个锐角,则以下结论正确的是(  )
A.sinα<sinβB.cosα<sinβC.cosα<cosβD.cosα>cosβ

查看答案和解析>>

同步练习册答案