精英家教网 > 高中数学 > 题目详情

【题目】如图所示的多面体,它的正视图为直角三角形,侧视图为正三角形,俯视图为正方形(尺寸如图所示),E为VB的中点.
(1)求证:VD∥平面EAC;
(2)求二面角A﹣VB﹣D的余弦值.

【答案】
(1)证明:由正视图可知:平面VAB⊥平面ABCD

连接BD交AC于O点,连接EO,由已知得BO=OD,VE=EB

∴VD∥EO

又VD平面EAC,EO平面EAC

∴VD∥平面EAC;


(2)解:设AB的中点为P,则VP⊥平面ABCD,建立如图所示的坐标系,

=(0,1,0)

设平面VBD的法向量为

∴由 ,可得 ,∴可取 =( ,1)

∴二面角A﹣VB﹣D的余弦值cosθ= =


【解析】(1)欲证VD∥平面EAC,根据直线与平面平行的判定定理可知只需证VD与平面EAC内一直线平行即可,而连接BD交AC于O点,连接EO,由已知易得VD∥EO,VD平面EAC,EO平面EAC,满足定理条件;(2)设AB的中点为P,则VP⊥平面ABCD,建立坐标系,利用向量的夹角公式,可求二面角A﹣VB﹣D的余弦值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知关于的函数

)当时,求函数在点处的切线方程.

)设,讨论函数的单调区间.

)若函数没有零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

若函数处的切线平行于直线求实数a的值

)判断函数在区间上零点的个数;

)在()的条件下,若在上存在一点使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若低于60分的人数是15人,则该班的学生人数是(

A.45
B.50
C.55
D.60

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系内,已知A(1,a),B(﹣5,﹣3),C(4,0);
(1)当a∈( ,3)时,求直线AC的倾斜角α的取值范围;
(2)当a=2时,求△ABC的BC边上的高AH所在直线方程l.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos2x+2 sinxcosx﹣sin2x.
(1)求f(x)的最小正周期和值域;
(2)在△ABC中,角A,B,C所对的边分别是a,b,c,若 且a2=bc,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A= . (Ⅰ)求A∩B,(RB)∪A;
(Ⅱ)若CA,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两定点 ,曲线上的动点满足,直线与曲线的另一个交点为

)求曲线的标准方程;

)设点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若a∈R,则“关于x的方程x2+ax+1=0无实根”是“z=(2a﹣1)+(a﹣1)i(其中i表示虚数单位)在复平面上对应的点位于第四象限”的(
A.充分非必要条件
B.必要非充分条件
C.充要条件
D.既非充分又非必要条件

查看答案和解析>>

同步练习册答案