精英家教网 > 高中数学 > 题目详情

【题目】已知关于的函数

)当时,求函数在点处的切线方程.

)设,讨论函数的单调区间.

)若函数没有零点,求实数的取值范围.

【答案】单调递增,在单调递减.(

【解析】试题分析:(1)a=-1时,求函数f(x)的导数,求出切线的斜率,点斜式写出处的切线方程(2)∵,分类讨论当时,当时的单调性(3)求F(x)的导数,利用导数判定F(x)的单调性与极值,从而确定使F(x)没有零点时a的取值.

试题解析:

)当时,

处的切线方程为

时, 上恒成立

单调递增,

时,令,解得

,解得

单调递增,

单调递减.

没有零点,

无解,

两图象无交点,

设两图象相切于点,

两图象无交点,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙两组各有三名同学,他们在一次测验中的成绩的茎叶图如图所示,如果分别从甲、乙两组中各随机挑选一名同学,则这两名同学成绩相同的概率是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的三内角A、B、C的对边分别是a、b、c,且b(sinB﹣sinC)+(c﹣a)(sinA+sinC)=0 (Ⅰ)求角A的大小;
(Ⅱ)若a= ,sinC= sinB,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到表格:(单位:人)

经常使用

偶尔或不用

合计

30岁及以下

70

30

100

30岁以上

60

40

100

合计

130

70

200

(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关?

(2)现从所抽取的30岁以上的网友中利用分层抽样的方法再抽取5人.

(i)分别求这5人中经常使用、偶尔或不用共享单车的人数;

(ii)从这5人中,再随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.

参考公式: ,其中.

参考数据:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,满足x2+y2≤1,x≥0,y≥0的点P(x,y)的集合对应的平面图形的面积为 ;类似的,在空间直角坐标系O﹣xyz中,满足x2+y2+z2≤1,x≥0,y≥0,z≥0的点P(x,y,z)的集合对应的空间几何体的体积为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】综合题。
(1)利用“五点法”画出函数 内的简图

x

x+

y


(2)若对任意x∈[0,2π],都有f(x)﹣3<m<f(x)+3恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 是奇函数,f(x)=lg(10x+1)+bx是偶函数.
(1)求a和b的值.
(2)说明函数g(x)的单调性;若对任意的t∈[0,+∞),不等式g(t2﹣2t)+g(2t2﹣k)>0恒成立,求实数k的取值范围.
(3)设 ,若存在x∈(﹣∞,1],使不等式g(x)>h[lg(10a+9)]成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:sin230°+sin290°+sin2150°=
sin25°+sin265°+sin2125°=
sin212°+sin272°+sin2132°=
通过观察上述两等式的规律,请你写出一般性的命题,并给予的证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的多面体,它的正视图为直角三角形,侧视图为正三角形,俯视图为正方形(尺寸如图所示),E为VB的中点.
(1)求证:VD∥平面EAC;
(2)求二面角A﹣VB﹣D的余弦值.

查看答案和解析>>

同步练习册答案