【题目】综合题。
(1)利用“五点法”画出函数 在 内的简图
x | |||||
x+ | |||||
y |
(2)若对任意x∈[0,2π],都有f(x)﹣3<m<f(x)+3恒成立,求m的取值范围.
【答案】
(1)解:根据题意,函数 在 内的列表如下:
x | |||||
0 | π | 2π | |||
y | 0 | 1 | 0 | ﹣1 | 0 |
在平面直角坐标系内可得图象如下:
(2)解:通过图象可知:当x∈[0,2π]时,函f(x)值域为 ,
要使f(x)﹣3<m<f(x)+3恒成立,
即:
解得: ,
∴m的取值范围是 .
【解析】(1)根据列表、描点、连线的基本步骤,画出函数在一个周期在 的大致图象即可.(2)根据x∈[0,2π],求解f(x)的值域,要使f(x)﹣3<m<f(x)+3恒成立,转化为最小和最大值问题.
【考点精析】解答此题的关键在于理解五点法作函数y=Asin(ωx+φ)的图象的相关知识,掌握描点法及其特例—五点作图法(正、余弦曲线),三点二线作图法(正、余切曲线).
科目:高中数学 来源: 题型:
【题目】已知全集U=R,集合A={x|﹣1<x<1},B={x|2≤4x≤8},C={x|a﹣4<x≤2a﹣7}.
(1)求(UA)∩B;
(2)若A∩C=C,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义域为R的偶函数f(x)满足对x∈R,有f(x+2)=f(x)﹣f(1),且当x∈[2,3]时,f(x)=﹣2x2+12x﹣18,若函数y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三个零点,则a的取值范围是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}是各项均不为0的等差数列.Sn为其前n项和,且满足an2=S2n﹣1(n∈N*),bn=an2+λan , 若{bn}为递增数列,则实数λ的范围为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l:ax﹣y+1=0与x轴,y轴分别交于点A,B.
(1)若a>0,点M(1,﹣1),点N(1,4),且以MN为直径的圆过点A,求以AN为直径的圆的方程;
(2)以线段AB为边在第一象限作等边三角形ABC,若a=﹣ ,且点P(m, )(m>0)满足△ABC与△ABP的面积相等,求m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂有一批货物由海上从甲地运往乙地,已知轮船的最大航行速度为60海里/小时,甲地至乙地之间的海上航行距离为600海里,每小时的运输成本由燃料费和其它费用组成,轮船每小时的燃料费与轮船速度的平方成正比,比例系数为0.5,其它费用为每小时1250元.
(1)请把全程运输成本(元)表示为速度(海里/小时)的函数,并指明定义域;
(2)为使全程运输成本最小,轮船应以多大速度行驶?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量,,函数的最大值为.
(1)求的大小;
(2)将函数的图象向左平移个单位,再将所得图象上各点的横坐标缩短为原来的,纵坐标不变,得到函数的图象,作出函数在的图象.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=cos2x+2 sinxcosx﹣sin2x.
(1)求f(x)的最小正周期和值域;
(2)在△ABC中,角A,B,C所对的边分别是a,b,c,若 且a2=bc,试判断△ABC的形状.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com