精英家教网 > 高中数学 > 题目详情

【题目】已知直线l:ax﹣y+1=0与x轴,y轴分别交于点A,B.
(1)若a>0,点M(1,﹣1),点N(1,4),且以MN为直径的圆过点A,求以AN为直径的圆的方程;
(2)以线段AB为边在第一象限作等边三角形ABC,若a=﹣ ,且点P(m, )(m>0)满足△ABC与△ABP的面积相等,求m的值.

【答案】
(1)解:由题意A(﹣ ,0),AM⊥AN,

=﹣1,∵a>0,∴a=1,

∴A(﹣1,0),∵N(1,4),

∴AN的中点坐标为D(0,2),|AD|=

∴以AN为直径的圆的方程是x2+(y﹣2)2=5;


(2)解:根据题意画出图形,如图所示:

由直线y=﹣ x+1,令x=0,解得y=1,

故点B(0,1),

令y=0,解得x= ,故点A( ,0),

∵△ABC为等边三角形,且OA= ,OB=1,

根据勾股定理得:AB=2,即等边三角形的边长为2,

故过C作AB边上的高为 ,即点C到直线AB的距离为

由题意△ABP和△ABC的面积相等,

则P到直线AB的距离d= |﹣ m+ |=

∵m>0,

∴m=


【解析】(1)求出A的坐标,即可求以AN为直径的圆的方程;(2)根据题意画出图形,令直线方程中x与y分别为0,求出相应的y与x的值,确定出点A与B的坐标,进而求出AB的长即为等边三角形的边长,求出等边三角形的高即为点C到直线AB的距离,由△ABP和△ABC的面积相等,得到点C与点P到直线AB的距离相等,利用点到直线的距离公式表示出点P到直线AB的距离d,让d等于求出的高列出关于m的方程,求出方程的解即可得到m的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知a>0, >1,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}为等差数列,其公差为﹣2,且a7是a3与a9的等比中项,Sn为{an}的前n项和,n∈N* , 则S10的值为(
A.﹣110
B.﹣90
C.90
D.110

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是偶函数.

(1)求的值;

(2)若函数的图像与直线没有交点,求的取值范围;

(3)若函数,是否存在实数使得最小值为0,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】综合题。
(1)利用“五点法”画出函数 内的简图

x

x+

y


(2)若对任意x∈[0,2π],都有f(x)﹣3<m<f(x)+3恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCD﹣A1B1C1D1的各个顶点与各棱的中点共20个点中,任取2点连成直线,在这些直线中任取一条,它与对角线BD1垂直的概率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左,右焦点分别为.过原点的直线与椭圆交于两点,点是椭圆上的点,若 ,且的周长为.

(1)求椭圆的方程;

(2) 设椭圆在点处的切线记为直线,点上的射影分别为,过的垂线交轴于点,试问是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产一种仪器的元件,由于受生产能力和技术水平等因素的限制,会产生一些次品,根据经验知道,次品数P(万件)与日产量x(万件)之间满足关系: 已知每生产l万件合格的元件可以盈利2万元,但每生产l万件次品将亏损1万元.(利润=盈利一亏损)
(1)试将该工厂每天生产这种元件所获得的利润T(万元)表示为日产量x(万件)的函数;
(2)当工厂将这种仪器的元件的日产量x定为多少时获得的利润最大,最大利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.

一次购物量

14

58

912

1316

17件及以上

顾客数(人)

x

30

25

y

10

结算时间(分钟/人)

1

1.5

2

2.5

3

已知这100位顾客中一次购物量超过8件的顾客占55%

)确定xy的值,并求顾客一次购物的结算时间X的分布列与数学期望;

)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.

(注:将频率视为概率)

查看答案和解析>>

同步练习册答案