精英家教网 > 高中数学 > 题目详情

在平面直角坐标系中,设二次函数的图象与两坐标轴有三个不同的交点. 经过这三个交点的圆记为.
(I)求实数的取值范围;
(II)求圆的一般方程;
(III)圆是否经过某个定点(其坐标与无关)?若存在,请求出点点的坐标;若不存在,请说明理由.

解:(I)令得抛物线与轴交点是;令,由题意
,解得,且.
(II)设所求圆的一般方程为
得,,这与是同一个方程,故.
得,,此方程有一个根为,代入得出
所以圆的一般方程为 .
(III)圆过定点.
证明如下:
法1,直接将点的坐标代入验证;
法2,圆的方程改写为,于是有
,解得,故过定点.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题10分)已知函数是奇
函数,当x>0时,有最小值2,且f (1)
(Ⅰ)试求函数的解析式;
(Ⅱ)函数图象上是否存在关于点(1,0)对称的两点?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知二次函数f (x)=,设方程f (x)
=x的两个实根为x1和x2
(1)如果x1<2<x2<4,且函数f (x)的对称轴为x=x0,求证:x0>—1;
(2)如果∣x1∣<2,,∣x2—x1∣=2,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.设函数
(Ⅰ)求的解析式及定义域。(Ⅱ)求的值域。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ)求的解析式及定义域。
(Ⅱ)求的值域。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,函数是区间上的减函数.
(1)求的最大值;
(2)若上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某企业生产一种产品时,固定成本为5000元,而每生产100台产品时直接消耗成本要增加2500元,市场对此商品年需求量为500台,销售的收入函数为R(x)=5x-x2(万元)(0≤x≤5),其中x是产品售出的数量(单位:百台)
(1)把利润表示为年产量的函数;
(2)年产量多少时,企业所得的利润最大?
(3)年产量多少时,企业才不亏本?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为
(1)求函数的值域;
(2)求函数的反函数。(12分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分)已知函数。(1)求不等式的解
集;(2)若不等式的解集为R,求实数m的取值范围。

查看答案和解析>>

同步练习册答案