精英家教网 > 高中数学 > 题目详情
在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且
a
sinA
=
2c
3

(1)确定角C的大小;
(2)若c=
7
,且△ABC的面积为
3
3
2
,求a+b的值.
考点:余弦定理,正弦定理
专题:三角函数的求值
分析:(1)已知等式左边利用正弦定理化简,求出sinC的值,根据C为锐角,即可确定出C的度数;
(2)由三角形面积公式列出关系式,将c,sinC及已知面积代入求出ab的值,利用余弦定理列出关系式,再利用完全平方公式变形,将ab的值代入求出a+b的值即可.
解答: 解:(1)∵
a
sinA
=
2c
3
,由正弦定理得
a
sinA
=
c
sinC

2c
3
=
c
sinC
,即sinC=
3
2

∵△ABC是锐角三角形,
∴C=
π
3

(2)∵c=
7
,C=
π
3
,△ABC的面积为
3
3
2

1
2
absin
π
3
=
3
3
2

∴ab=6,
由余弦定理得a2+b2-2abcos
π
3
=(a+b)2-3ab=7,
∴(a+b)2=25,
∴a+b=5.
点评:此题考查了正弦、余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=x2+ax,x∈R,常数a∈R,则(  )
A、存在a,使f(x)是奇函数
B、存在a,使f(x)是偶函数
C、?a∈R,f(x)在(0,+∞)上是增函数
D、?a∈R,f(x)在(-∞,0)上是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知点F为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)右焦点,圆A:(x+t)2+y2=2(t>0)与椭圆C的一个公共点为B(0,1),且直线FB与圆A相切于点B.
(Ⅰ)求t的值及椭圆C的标准方程;
(Ⅱ)设动点P(x0,y0)满足
OP
=
OM
+3
ON
,其中M、N是椭圆C上的点,O为原点,直线OM与ON的斜率之积为-
1
2
,求证:x02+2y02为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ex-1
ex+1

(1)试判断该函数的奇偶性,并加以证明;
(2)当f(x)<a恒成立时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(ωx-
π
6
)-2cos2
ω
2
x+1(ω>0).直线y=
3
与函数y=f(x)图象相邻两交点的距离为π.
(Ⅰ)求ω的值;
(Ⅱ)在△ABC中,角A、B、C所对的边分别是a、b、c,若点(
B
2
,0)是函数y=f(x)图象的一个对称中心,且b=3,求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax-lnx-1,若曲线y=f(x)在点(1,f(1))处的切线平行于x轴.
(Ⅰ)求实数a的值;
(Ⅱ)函数g(x)=f(x)-m(x-1)(m∈R)恰有两个零点x1,x2(x1<x2).
   (i)求函数g(x)的单调区间及实数m的取值范围;
   (ii)求证:g′(
x1+x2
2
)>0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0且a≠1,f(x)=
a
a2-1
(ax-a-x
(1)判断函数f(x)的奇偶性;
(2)判断函数f(x)的单调性,并证明;
(3)当函数f(x)的定义域为(-1,1)时,求使f(1-m)+f(1-m2)<0成立的实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项的和为Sn,a5+a6=11,S4=10.
(1)求数列{an}的通项公式;
(2)已知数列{bn}是首项为1,公比为2的等比数列,求数列{anbn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知程序框图如图所示,执行相应程序,输出y的值为1,则输入的整数x的值等于
 

查看答案和解析>>

同步练习册答案