精英家教网 > 高中数学 > 题目详情
12.平行四边形ABCD的两条对角线相交于点M,点P是线段BD上任意一点.若$|\overrightarrow{AB}|=2,|\overrightarrow{AD}|=1$,且∠BAD=60°,则$\overrightarrow{AP}•\overrightarrow{CP}$的取值范围是(  )
A.$[1,\frac{7}{4}]$B.$[-\frac{7}{4},-1]$C.$[-\sqrt{2},-1]$D.$[-1,\sqrt{2}]$

分析 通过图形,分别表示则$\overrightarrow{AP}$,$\overrightarrow{CP}$,然后进行向量数量积的运算即可.

解答 解:设$\overrightarrow{BP}$=λ$\overrightarrow{BD}$,λ∈[0,1],由题意可得
$\overrightarrow{AP}•\overrightarrow{CP}$=($\overrightarrow{AB}$+λ$\overrightarrow{BD}$)•($\overrightarrow{CB}$+λ$\overrightarrow{BD}$)
=($\overrightarrow{AB}$+λ$\overrightarrow{BD}$)•(-$\overrightarrow{AD}$+λ$\overrightarrow{BD}$)
=[$\overrightarrow{AB}$+λ($\overrightarrow{AD}$-$\overrightarrow{AB}$)]•[-$\overrightarrow{AD}$+λ($\overrightarrow{AD}$-$\overrightarrow{AB}$)]
=[(1-λ)$\overrightarrow{AB}$+λ$\overrightarrow{AD}$]•[(-λ$\overrightarrow{AB}$)+(λ-1)$\overrightarrow{AD}$]
=λ•(λ-1)${\overrightarrow{AB}}^{2}$+(-2λ2+2λ-1)$\overrightarrow{AB}•\overrightarrow{AD}$+λ(λ-1)${\overrightarrow{AD}}^{2}$
=4λ•(λ-1)+(-2λ2+2λ-1)•2•1•cos60°+λ(λ-1)•1
=3λ2-3λ-1=3${(λ-\frac{1}{2})}^{2}$-$\frac{7}{4}$,
故当λ=$\frac{1}{2}$时,$\overrightarrow{AP}•\overrightarrow{CP}$ 取得最小值为-$\frac{7}{4}$,
当λ=0或1时,$\overrightarrow{AP}•\overrightarrow{CP}$ 取得最大值-1,
故$\overrightarrow{AP}•\overrightarrow{CP}$ 的范围为[-$\frac{7}{4}$,-1],
故选:B.

点评 本题考查平面向量的数量积的运算,用已知向量表示未知向量,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.等比数列{an}的公比为-$\sqrt{2}$,则ln(a20172-ln(a20162=ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知复数$z=\frac{a+i}{2-i}$(i 为虚数单位)的共轭复数在复平面内对应的点在第三象限,则实数a的取值范围是(  )
A.$({-2,\frac{1}{2}})$B.$({-\frac{1}{2},2})$C.(-∞,-2)D.$({\frac{1}{2},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如下:
女性用户:
分值区间[50,60)[60,70)[70,80)[80,90)[90,100]
频数2040805010
男性用户:
分值区间[50,60)[60,70)[70,80)[80,90)[90,100]
频数4575906030
(Ⅰ)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不要求计算具体值,给出结论即可);

(Ⅱ)分别求女性用户评分的众数,男性用户评分的中位数;
(Ⅲ)如果评分不低于70分,就表示该用户对手机“认可”,否则就表示“不认可”,完成下列2×2列联表,并回答是否有95%的把握认为性别和对手机的“认可”有关;
女性用户男性用户合计
“认可”手机140180320
“不认可”手机60120180
合计200300500
P(K2≥x00.050.01
x03.8416.635
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设f(x)=$\frac{(4x+a)lnx}{3x+1}$,曲线y=f(x)在点(1,f(1))处的切线与直线x+y+1=0垂直.
(Ⅰ)求a的值;
(Ⅱ)若对于任意的x∈[1,+∞),f(x)≤m(x-1)恒成立,求m的取值范围;
(Ⅲ)求证:ln(4n+1)≤16$\sum_{i=1}^{n}$$\frac{i}{(4i+1)(4i-3)}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=ln(x+1)-$\frac{kx}{x+1}$+1(x>-1)
(1)讨论f(x)的单调性;
(2)k>0,若f(x)的最小值为g(k),当0<k1<k2且k1+k2=2,比较g(k1)与g(k2)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数y=f(x)满足对任意x∈R都有f(x+2)=f(-x)成立,且函数y=f(x-1)的图象关于点(1,0)对称,f(1)=4,则f(2016)+f(2017)+f(2018)的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入x的值为2,则输出的v值为(  )
A.9×210-2B.9×210+2C.9×211+2D.9×211-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.对于实数m>-3,若函数$y={(\frac{1}{2})^x}$图象上存在点(x,y)满足约束条件$\left\{\begin{array}{l}x-y+3≥0\\ x+2y+3≥0\\ x≤m\end{array}\right.$,则实数m 的最小值为(  )
A.$\frac{1}{2}$B.-1C.-$\frac{3}{2}$D.-2

查看答案和解析>>

同步练习册答案