| A. | $({-2,\frac{1}{2}})$ | B. | $({-\frac{1}{2},2})$ | C. | (-∞,-2) | D. | $({\frac{1}{2},+∞})$ |
分析 利用复数的运算法则、共轭复数的定义、几何意义即可得出.
解答 解:复数$z=\frac{a+i}{2-i}$=$\frac{(a+i)(2+i)}{(2-i)(2+i)}$=$\frac{2a-1}{5}$+$\frac{(2+a)}{5}$i的共轭复数$\frac{2a-1}{5}$-$\frac{(2+a)}{5}$i的共在复平面内对应的点在第三象限,
∴$\frac{2a-1}{5}$<0,-$\frac{(2+a)}{5}$<0,
解得a$<\frac{1}{2}$,且a>-2,
则实数a的取值范围是$(-2,\frac{1}{2})$.
故选:A.
点评 本题考查了复数的运算法则、共轭复数的定义、几何意义,考查了推理能力与计算能力,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 6174 | B. | 7083 | C. | 8341 | D. | 8352 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\sqrt{7}$ | B. | 0 | C. | $\sqrt{7}$ | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=$\frac{{2-{x^2}}}{2x}$ | B. | f(x)=$\frac{cosx}{x^2}$ | C. | f(x)=$\frac{{{{cos}^2}x}}{x}$ | D. | f(x)=$\frac{cosx}{x}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[1,\frac{7}{4}]$ | B. | $[-\frac{7}{4},-1]$ | C. | $[-\sqrt{2},-1]$ | D. | $[-1,\sqrt{2}]$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com