精英家教网 > 高中数学 > 题目详情
7.设f(x)=$\frac{(4x+a)lnx}{3x+1}$,曲线y=f(x)在点(1,f(1))处的切线与直线x+y+1=0垂直.
(Ⅰ)求a的值;
(Ⅱ)若对于任意的x∈[1,+∞),f(x)≤m(x-1)恒成立,求m的取值范围;
(Ⅲ)求证:ln(4n+1)≤16$\sum_{i=1}^{n}$$\frac{i}{(4i+1)(4i-3)}$(n∈N*).

分析 (Ⅰ)求出原函数的导函数,结合f'(1)=1列式求得a值;
(Ⅱ)把(Ⅰ)中求得的a值代入函数解析式,由f(x)≤m(x-1)得到$4lnx≤m({3x-\frac{1}{x}-2})$,构造函数$g(x)=4lnx-m({3x-\frac{1}{x}-2})$,即?x∈[1,+∞),g(x)≤0.然后对m分类讨论求导求得m的取值范围;
(Ⅲ)由(Ⅱ)知,当x>1时,m=1时,$lnx≤\frac{1}{4}({3x-\frac{1}{x}-2})$成立.令$x=\frac{4i+1}{4i-3},i∈{N^*}$,然后分别取i=1,2,…,n,利用累加法即可证明结论.

解答 (Ⅰ)解:$f'(x)=\frac{{(\frac{4x+a}{x}+4lnx)(3x+1)-3(4x+a)lnx}}{{{{(3x+1)}^2}}}$--------------(1分)
由题设f'(1)=1,∴$\frac{4+a}{4}=1$,即a=0;-------------(2分)
(Ⅱ)解:$f(x)=\frac{4xlnx}{3x+1}$,?x∈[1,+∞),f(x)≤m(x-1),即$4lnx≤m({3x-\frac{1}{x}-2})$,
设$g(x)=4lnx-m({3x-\frac{1}{x}-2})$,即?x∈[1,+∞),g(x)≤0.
$g'(x)=\frac{4}{x}-m({3+\frac{1}{x^2}})=\frac{{-3m{x^2}+4x-m}}{x^2}$,g'(1)=4-4m.----------------------------(3分)
①若m≤0,g'(x)>0,g(x)≥g(1)=0,这与题设g(x)≤0矛盾;
②若m∈(0,1),当$x∈(1,\frac{{2+\sqrt{4-3{m^2}}}}{3m}),g'(x)>0$,g(x)单调递增,g(x)>g(1)=0,与题设矛盾;
③若m≥1,当x∈(1,+∞),g'(x)≤0,g(x)单调递减,g(x)≤g(1)=0,即不等式成立;
综上所述,m≥1.------------------------------------------------------------------------(7分)
(Ⅲ)证明:由(Ⅱ)知,当x>1时,m=1时,$lnx≤\frac{1}{4}({3x-\frac{1}{x}-2})$成立.---------------(9分)
不妨令$x=\frac{4i+1}{4i-3},i∈{N^*}$,
∴$ln\frac{4i+1}{4i-3}≤\frac{16i}{{({4i+1})({4i-3})}}$,
即$ln\frac{4+1}{4-3}≤\frac{16}{{({4+1})({4-3})}}$,$ln\frac{4×2+1}{4×2-3}≤\frac{16×2}{{({4×2+1})({4×2-3})}}$,$ln\frac{4×3+1}{4×3-3}≤\frac{16×3}{{({4×3+1})({4×3-3})}}$,…,$ln\frac{4n+1}{4n-3}≤\frac{16n}{{({4n+1})({4n-3})}}$.
累加可得:ln(4n+1)≤16$\sum_{i=1}^{n}$$\frac{i}{(4i+1)(4i-3)}$(n∈N*).

点评 本题主要考查导数的几何意义、导数及其应用、不等式等基础知识,考查推理论证能力、运算求解能力、创新意识等,考查函数与方程思想、化归与转化思想、分类与整合思想、数形结合思想等,是压轴题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.复数3i(1+i)的实部和虚部分别为(  )
A.3,3B.-3,3C.3,3iD.-3,3i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.△ABC的内角A,B,C的对边分别为a,b,c,已知3acosC=2ccosA,$tanC=\frac{1}{2}$,
(Ⅰ)求B;
(Ⅱ)若b=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.我国是世界上严重缺水的国家,城市缺水问题较为突出.某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准x(吨),用水量不超过 x 的部分按平价收费,超出 x 的部分按议价收费.为了了解全市居民用水量的分布情况,通过抽样,获得了 100 位居民某年的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.
(Ⅰ)求直方图中 a 的值;
(Ⅱ)若该市政府希望使 85%的居民每月的用水量不超过标准 x(吨),估计 x 的值,并说明理由;
(Ⅲ)已知平价收费标准为 4 元/吨,议价收费标准为 8元/吨.当 x=3时,估计该市居民的月平均水费.(同一组中的数据用该组区间的中点值代替)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知α为第四象限角,$sinα+cosα=\frac{1}{5}$,则$tan\frac{α}{2}$的值为(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.平行四边形ABCD的两条对角线相交于点M,点P是线段BD上任意一点.若$|\overrightarrow{AB}|=2,|\overrightarrow{AD}|=1$,且∠BAD=60°,则$\overrightarrow{AP}•\overrightarrow{CP}$的取值范围是(  )
A.$[1,\frac{7}{4}]$B.$[-\frac{7}{4},-1]$C.$[-\sqrt{2},-1]$D.$[-1,\sqrt{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设函数f(x)=$\left\{\begin{array}{l}3x-1,x<1\\{2}^{x},x≥1\end{array}\right.$,则满足f(f(a))=2f(a)的a取值范围是(  )
A.[$\frac{2}{3}$,+∞)B.[$\frac{2}{3}$,1]C.[1,+∞)D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列说法中不正确的个数是(  )
①“x=1”是“x2-3x+2=0”的必要不充分条件
②命题“?x∈R,cosx≤1”的否定是“?x0∈R,cosx0≥1”
③若一个命题的逆命题为真,则它的否命题一定为真.
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合 A={x|x2-x-2>0},B={x|1≤x≤3},则图中阴影部分所表示的集合为(  )
A.[1,2)B.(1,3]C.[1,2]D.(2,3]

查看答案和解析>>

同步练习册答案